A Python scikit for building and analyzing recommender systems

Overview

GitHub version Documentation Status Build Status python versions License DOI

logo

Overview

Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data.

Surprise was designed with the following purposes in mind:

The name SurPRISE (roughly :) ) stands for Simple Python RecommendatIon System Engine.

Please note that surprise does not support implicit ratings or content-based information.

Getting started, example

Here is a simple example showing how you can (down)load a dataset, split it for 5-fold cross-validation, and compute the MAE and RMSE of the SVD algorithm.

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import cross_validate

# Load the movielens-100k dataset (download it if needed).
data = Dataset.load_builtin('ml-100k')

# Use the famous SVD algorithm.
algo = SVD()

# Run 5-fold cross-validation and print results.
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)

Output:

Evaluating RMSE, MAE of algorithm SVD on 5 split(s).

            Fold 1  Fold 2  Fold 3  Fold 4  Fold 5  Mean    Std
RMSE        0.9311  0.9370  0.9320  0.9317  0.9391  0.9342  0.0032
MAE         0.7350  0.7375  0.7341  0.7342  0.7375  0.7357  0.0015
Fit time    6.53    7.11    7.23    7.15    3.99    6.40    1.23
Test time   0.26    0.26    0.25    0.15    0.13    0.21    0.06

Surprise can do much more (e.g, GridSearchCV)! You'll find more usage examples in the documentation .

Benchmarks

Here are the average RMSE, MAE and total execution time of various algorithms (with their default parameters) on a 5-fold cross-validation procedure. The datasets are the Movielens 100k and 1M datasets. The folds are the same for all the algorithms. All experiments are run on a notebook with Intel Core i5 7th gen (2.5 GHz) and 8Go RAM. The code for generating these tables can be found in the benchmark example.

Movielens 100k RMSE MAE Time
SVD 0.934 0.737 0:00:11
SVD++ 0.92 0.722 0:09:03
NMF 0.963 0.758 0:00:15
Slope One 0.946 0.743 0:00:08
k-NN 0.98 0.774 0:00:10
Centered k-NN 0.951 0.749 0:00:10
k-NN Baseline 0.931 0.733 0:00:12
Co-Clustering 0.963 0.753 0:00:03
Baseline 0.944 0.748 0:00:01
Random 1.514 1.215 0:00:01
Movielens 1M RMSE MAE Time
SVD 0.873 0.686 0:02:13
SVD++ 0.862 0.673 2:54:19
NMF 0.916 0.724 0:02:31
Slope One 0.907 0.715 0:02:31
k-NN 0.923 0.727 0:05:27
Centered k-NN 0.929 0.738 0:05:43
k-NN Baseline 0.895 0.706 0:05:55
Co-Clustering 0.915 0.717 0:00:31
Baseline 0.909 0.719 0:00:19
Random 1.504 1.206 0:00:19

Installation

With pip (you'll need numpy, and a C compiler. Windows users might prefer using conda):

$ pip install numpy
$ pip install scikit-surprise

With conda:

$ conda install -c conda-forge scikit-surprise

For the latest version, you can also clone the repo and build the source (you'll first need Cython and numpy):

$ pip install numpy cython
$ git clone https://github.com/NicolasHug/surprise.git
$ cd surprise
$ python setup.py install

License and reference

This project is licensed under the BSD 3-Clause license, so it can be used for pretty much everything, including commercial applications. Please let us know how Surprise is useful to you!

Please make sure to cite the paper if you use Surprise for your research:

@article{Hug2020,
  doi = {10.21105/joss.02174},
  url = {https://doi.org/10.21105/joss.02174},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {52},
  pages = {2174},
  author = {Nicolas Hug},
  title = {Surprise: A Python library for recommender systems},
  journal = {Journal of Open Source Software}
}

Contributors

The following persons have contributed to Surprise:

ashtou, bobbyinfj, caoyi, Олег Демиденко, Charles-Emmanuel Dias, dmamylin, Lauriane Ducasse, Marc Feger, franckjay, Lukas Galke, Tim Gates, Pierre-François Gimenez, Zachary Glassman, Jeff Hale, Nicolas Hug, Janniks, jyesawtellrickson, Doruk Kilitcioglu, Ravi Raju Krishna, Hengji Liu, Maher Malaeb, Manoj K, James McNeilis, Naturale0, nju-luke, Jay Qi, Lucas Rebscher, Skywhat, David Stevens, TrWestdoor, Victor Wang, Mike Lee Williams, Jay Wong, Chenchen Xu, YaoZh1918.

Thanks a lot :) !

Development Status

Starting from version 1.1.0 (September 19), we will only maintain the package and provide bugfixes. No new features will be considered.

For bugs, issues or questions about Surprise, please use the GitHub project page. Please don't send emails (we will not answer).

Owner
Nicolas Hug
ML engineer, Scikit-learn core-developer
Nicolas Hug
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022