QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Overview

logo

GitHub last commit

Introduction

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented. QRec has a lightweight architecture and provides user-friendly interfaces. It can facilitate model implementation and evaluation.
Founder and principal contributor: @Coder-Yu
Other contributors: @DouTong @Niki666 @HuXiLiFeng @BigPowerZ @flyxu
Supported by: @AIhongzhi (A/Prof. Hongzhi Yin, UQ), @mingaoo (A/Prof. Min Gao, CQU)

What's New

30/07/2021 - We have transplanted QRec from py2 to py3.
07/06/2021 - SEPT proposed in our KDD'21 paper has been added.
16/05/2021 - SGL proposed in SIGIR'21 paper has been added.
16/01/2021 - MHCN proposed in our WWW'21 paper has been added.
22/09/2020 - DiffNet proposed in SIGIR'19 has been added.
19/09/2020 - DHCF proposed in KDD'20 has been added.
29/07/2020 - ESRF proposed in my TKDE paper has been added.
23/07/2020 - LightGCN proposed in SIGIR'20 has been added.
17/09/2019 - NGCF proposed in SIGIR'19 has been added.
13/08/2019 - RSGAN proposed in ICDM'19 has been added.
09/08/2019 - Our paper is accepted as full research paper by ICDM'19.
20/02/2019 - IRGAN proposed in SIGIR'17 has been added.
12/02/2019 - CFGAN proposed in CIKM'18 has been added.

Architecture

QRec Architecture

Workflow

QRec Architecture

Features

  • Cross-platform: QRec can be easily deployed and executed in any platforms, including MS Windows, Linux and Mac OS.
  • Fast execution: QRec is based on Numpy, Tensorflow and some lightweight structures, which make it run fast.
  • Easy configuration: QRec configs recommenders with a configuration file and provides multiple evaluation protocols.
  • Easy expansion: QRec provides a set of well-designed recommendation interfaces by which new algorithms can be easily implemented.

Usage

There are two ways to run the recommendation models in QRec:

  • 1.Configure the xx.conf file in the directory named config. (xx is the name of the model you want to run)
  • 2.Run main.py.

Or

  • Follow the codes in snippet.py.

For more details, we refer you to the handbook of QRec.

Configuration

Essential Options

Entry Example Description
ratings D:/MovieLens/100K.txt Set the file path of the dataset. Format: each row separated by empty, tab or comma symbol.
social D:/MovieLens/trusts.txt Set the file path of the social dataset. Format: each row separated by empty, tab or comma symbol.
ratings.setup -columns 0 1 2 -columns: (user, item, rating) columns of rating data are used.
social.setup -columns 0 1 2 -columns: (trustor, trustee, weight) columns of social data are used.
mode.name UserKNN/ItemKNN/SlopeOne/etc. name of the recommendation model.
evaluation.setup -testSet ../dataset/testset.txt Main option: -testSet, -ap, -cv (choose one of them)
-testSet path/to/test/file (need to specify the test set manually)
-ap ratio (ap means that the ratings are automatically partitioned into training set and test set, the number is the ratio of the test set. e.g. -ap 0.2)
-cv k (-cv means cross validation, k is the number of the fold. e.g. -cv 5)
-predict path/to/user list/file (predict for a given list of users without evaluation; need to mannually specify the user list file (each line presents a user))
Secondary option:-b, -p, -cold, -tf, -val (multiple choices)
-val ratio (model test would be conducted on the validation set which is generated by randomly sampling the training dataset with the given ratio.)
-b thres (binarizing the rating values. Ratings equal or greater than thres will be changed into 1, and ratings lower than thres will be left out. e.g. -b 3.0)
-p (if this option is added, the cross validation wll be executed parallelly, otherwise executed one by one)
-tf (model training will be conducted on TensorFlow (only applicable and needed for shallow models))
-cold thres (evaluation on cold-start users; users in the training set with rated items more than thres will be removed from the test set)
item.ranking off -topN -1 Main option: whether to do item ranking
-topN N1,N2,N3...: the length of the recommendation list. *QRec can generate multiple evaluation results for different N at the same time
output.setup on -dir ./Results/ Main option: whether to output recommendation results
-dir path: the directory path of output results.

Memory-based Options

similarity pcc/cos Set the similarity method to use. Options: PCC, COS;
num.neighbors 30 Set the number of neighbors used for KNN-based algorithms such as UserKNN, ItemKNN.

Model-based Options

num.factors 5/10/20/number Set the number of latent factors
num.max.iter 100/200/number Set the maximum number of iterations for iterative recommendation algorithms.
learnRate -init 0.01 -max 1 -init initial learning rate for iterative recommendation algorithms;
-max: maximum learning rate (default 1);
reg.lambda -u 0.05 -i 0.05 -b 0.1 -s 0.1 -u: user regularizaiton; -i: item regularization; -b: bias regularizaiton; -s: social regularization

Implement Your Model

  • 1.Make your new algorithm generalize the proper base class.
  • 2.Reimplement some of the following functions as needed.
          - readConfiguration()
          - printAlgorConfig()
          - initModel()
          - buildModel()
          - saveModel()
          - loadModel()
          - predictForRanking()
          - predict()

For more details, we refer you to the handbook of QRec.

Implemented Algorithms

       
Rating prediction Paper
SlopeOne Lemire and Maclachlan, Slope One Predictors for Online Rating-Based Collaborative Filtering, SDM'05.
PMF Salakhutdinov and Mnih, Probabilistic Matrix Factorization, NIPS'08.
SoRec Ma et al., SoRec: Social Recommendation Using Probabilistic Matrix Factorization, SIGIR'08.
SVD++ Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, SIGKDD'08.
RSTE Ma et al., Learning to Recommend with Social Trust Ensemble, SIGIR'09.
SVD Y. Koren, Collaborative Filtering with Temporal Dynamics, SIGKDD'09.
SocialMF Jamali and Ester, A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks, RecSys'10.
EE Khoshneshin et al., Collaborative Filtering via Euclidean Embedding, RecSys'10.
SoReg Ma et al., Recommender systems with social regularization, WSDM'11.
LOCABAL Tang, Jiliang, et al. Exploiting local and global social context for recommendation, AAAI'13.
SREE Li et al., Social Recommendation Using Euclidean embedding, IJCNN'17.
CUNE-MF Zhang et al., Collaborative User Network Embedding for Social Recommender Systems, SDM'17.

                       
Item Ranking Paper
BPR Rendle et al., BPR: Bayesian Personalized Ranking from Implicit Feedback, UAI'09.
WRMF Yifan Hu et al.Collaborative Filtering for Implicit Feedback Datasets, KDD'09.
SBPR Zhao et al., Leveraing Social Connections to Improve Personalized Ranking for Collaborative Filtering, CIKM'14
ExpoMF Liang et al., Modeling User Exposure in Recommendation, WWW''16.
CoFactor Liang et al., Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence, RecSys'16.
TBPR Wang et al. Social Recommendation with Strong and Weak Ties, CIKM'16'.
CDAE Wu et al., Collaborative Denoising Auto-Encoders for Top-N Recommender Systems, WSDM'16'.
DMF Xue et al., Deep Matrix Factorization Models for Recommender Systems, IJCAI'17'.
NeuMF He et al. Neural Collaborative Filtering, WWW'17.
CUNE-BPR Zhang et al., Collaborative User Network Embedding for Social Recommender Systems, SDM'17'.
IRGAN Wang et al., IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models, SIGIR'17'.
SERec Wang et al., Collaborative Filtering with Social Exposure: A Modular Approach to Social Recommendation, AAAI'18'.
APR He et al., Adversarial Personalized Ranking for Recommendation, SIGIR'18'.
IF-BPR Yu et al. Adaptive Implicit Friends Identification over Heterogeneous Network for Social Recommendation, CIKM'18'.
CFGAN Chae et al. CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks, CIKM'18.
NGCF Wang et al. Neural Graph Collaborative Filtering, SIGIR'19'.
DiffNet Wu et al. A Neural Influence Diffusion Model for Social Recommendation, SIGIR'19'.
RSGAN Yu et al. Generating Reliable Friends via Adversarial Learning to Improve Social Recommendation, ICDM'19'.
LightGCN He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation, SIGIR'20.
DHCF Ji et al. Dual Channel Hypergraph Collaborative Filtering, KDD'20.
ESRF Yu et al. Enhancing Social Recommendation with Adversarial Graph Convlutional Networks, TKDE'20.
MHCN Yu et al. Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation, WWW'21.
SGL Wu et al. Self-supervised Graph Learning for Recommendation, SIGIR'21.
SEPT Yu et al. Socially-Aware Self-supervised Tri-Training for Recommendation, KDD'21.

Related Datasets

   
Data Set Basic Meta User Context
Users Items Ratings (Scale) Density Users Links (Type)
Ciao [1] 7,375 105,114 284,086 [1, 5] 0.0365% 7,375 111,781 Trust
Epinions [2] 40,163 139,738 664,824 [1, 5] 0.0118% 49,289 487,183 Trust
Douban [3] 2,848 39,586 894,887 [1, 5] 0.794% 2,848 35,770 Trust
LastFM [4] 1,892 17,632 92,834 implicit 0.27% 1,892 25,434 Trust
Yelp [5] 19,539 21,266 450,884 implicit 0.11% 19,539 864,157 Trust

Reference

[1]. Tang, J., Gao, H., Liu, H.: mtrust:discerning multi-faceted trust in a connected world. In: International Conference on Web Search and Web Data Mining, WSDM 2012, Seattle, Wa, Usa, February. pp. 93–102 (2012)

[2]. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM conference on Recommender systems. pp. 17–24. ACM (2007)

[3]. G. Zhao, X. Qian, and X. Xie, “User-service rating prediction by exploring social users’ rating behaviors,” IEEE Transactions on Multimedia, vol. 18, no. 3, pp. 496–506, 2016.

[4]. Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. 2nd Workshop on Information Heterogeneity and Fusion in Recom- mender Systems (HetRec 2011). In Proceedings of the 5th ACM conference on Recommender systems (RecSys 2011). ACM, New York, NY, USA

[5]. Yu et al. Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation, WWW'21.

Acknowledgment

This project is supported by the Responsible Big Data Intelligence Lab (RBDI) at the school of ITEE, University of Queensland, and Chongqing University.

If our project is helpful to you, please cite one of these papers.
@inproceedings{yu2018adaptive,
title={Adaptive implicit friends identification over heterogeneous network for social recommendation},
author={Yu, Junliang and Gao, Min and Li, Jundong and Yin, Hongzhi and Liu, Huan},
booktitle={Proceedings of the 27th ACM International Conference on Information and Knowledge Management},
pages={357--366},
year={2018},
organization={ACM}
}

@inproceedings{yu2021self,
title={Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation},
author={Yu, Junliang and Yin, Hongzhi and Li, Jundong and Wang, Qinyong and Hung, Nguyen Quoc Viet and Zhang, Xiangliang},
booktitle={Proceedings of the Web Conference 2021},
pages={413--424},
year={2021}
}

Owner
Yu
A light heart lives long.
Yu
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

GHCF This is our implementation of the paper: Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2

Chong Chen 53 Dec 05, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 02, 2023
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
Graph Neural Network based Social Recommendation Model. SIGIR2019.

Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif

PeijieSun 144 Dec 29, 2022
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023