Handling Information Loss of Graph Neural Networks for Session-based Recommendation

Overview

LESSR

A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) from the paper:
Handling Information Loss of Graph Neural Networks for Session-based Recommendation, Tianwen Chen and Raymong Chi-Wing Wong, KDD '20

Requirements

  • PyTorch 1.6.0
  • NumPy 1.19.1
  • Pandas 1.1.3
  • DGL 0.5.2

Usage

  1. Install the requirements.
    If you use Anaconda, you can create a conda environment with the required packages using the following command.

    conda env create -f packages.yml

    Activate the created conda environment.

    conda activate lessr
    
  2. Download and extract the datasets.

  3. Preprocess the datasets using preprocess.py.
    For example, to preprocess the Diginetica dataset, extract the file train-item-views.csv to the folder datasets/ and run the following command:

    python preprocess.py -d diginetica -f datasets/train-item-views.csv

    The preprocessed dataset is stored in the folder datasets/diginetica.
    You can see the detailed usage of preprocess.py by running the following command:

    python preprocess.py -h
  4. Train the model using main.py.
    If no arguments are passed to main.py, it will train a model using a sample dataset with default hyperparameters.

    python main.py

    The commands to train LESSR with suggested hyperparameters on different datasets are as follows:

    python main.py --dataset-dir datasets/diginetica --embedding-dim 32 --num-layers 4
    python main.py --dataset-dir datasets/gowalla --embedding-dim 64 --num-layers 4
    python main.py --dataset-dir datasets/lastfm --embedding-dim 128 --num-layers 4

    You can see the detailed usage of main.py by running the following command:

    python main.py -h
  5. Use your own dataset.

    1. Create a subfolder in the datasets/ folder.
    2. The subfolder should contain the following 3 files.
      • num_items.txt: This file contains a single integer which is the number of items in the dataset.
      • train.txt: This file contains all the training sessions.
      • test.txt: This file contains all the test sessions.
    3. Each line of train.txt and test.txt represents a session, which is a list of item IDs separated by commas. Note the item IDs must be in the range of [0, num_items).
    4. See the folder datasets/sample for an example of a dataset.

Citation

If you use our code in your research, please cite our paper:

@inproceedings{chen2020lessr,
    title="Handling Information Loss of Graph Neural Networks for Session-based Recommendation",
    author="Tianwen {Chen} and Raymond Chi-Wing {Wong}",
    booktitle="Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '20)",
    pages="1172-–1180",
    year="2020"
}
Owner
Tianwen CHEN
A CS PhD Student in HKUST
Tianwen CHEN
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022
Handling Information Loss of Graph Neural Networks for Session-based Recommendation

LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro

Tianwen CHEN 62 Dec 03, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 02, 2023
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022