Respiratory Health Recommendation System

Overview

Respiratory-Health-Recommendation-System

Respiratory Health Recommendation System based on Air Quality Index Forecasts

This project aims to provide predictions and visualization of Air Quality Index across 100 counties in United States. Air quality index or AQI forecasts are important as it’s one of the most useful measure of air quality calculated from different pollutant concentrations in the air. Currently there are websites providing AQI forecasts but do not provide customized health recommendations. Using this product, Individuals can take appropriate preventive measures based on our recommendations and public authorities can use AQI forecasts to make decisions for policy making, urban planning and well-being of public health. The project is an end to end product that creates forecasts, provides visualizations, and delivers personalized health recommendations.

BigQuery database with an API was used to download EPA data as well as OpenWeatherMap API to compile the last 11 years of data for 6 key atmospheric pollutants which are CO, NO2, PM2.5, PM10, SO2, and O3.

Data was cleaned for missing values. First rolled up data to county level from site level through max aggregation and used time series interpolation to fill in the possible missing values. Afterwards, we were finally able to select 100 counties across US which ensured enough data to effectively allow for model building. The individual pollutants time series data was merged with temperature, pressure, relative humidity, and windspeed to take climate conditions into account as well. As the final data consists of 11 years of data for 100 counties, there are around half a million observation points with 20 columns.

VAR(vector autoregression) has been used which being a multivariate approach, should capture the complexities in the models. Through VAR, novel geospatial effects have also been incorporated in our models, for which we added 5 neighbor counties data for each county for every day.

Thus were created 100 models one for each county using VAR. Best models have been selected using optimum lag(number of past days data to be used into a model) based on AIC and BIC values which were then used to forecast respective pollutant concentration Data and ultimately AQI.

Results were evaluated using Root Mean Square Error values and found out that forecasts are within acceptable error range for most of the counties. VAR is definitely an improvement over ARIMA and further hyper parameter tuning in conjunction with the availability of more recent data will even further improve the quality of forecasts.

Based on our merged and forecast datasets, we have created interactive visualisations, to see the past 11 years trends, and forecasts. Users can choose from 1 to 6 pollutants, data range and counties as per requirement.

Owner
Abhishek Gawabde
Abhishek Gawabde
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022