A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Overview

Content-Based-Movie-Recommender-System

This model relies on the similarity of the items being recommended.

(I have used Pandas and Numpy. However others may also use different libraries)

A content based recommender works with data that the user provides, either explicitly movie ratings for the MovieLens dataset. Based on that data, a user profile vector is generated, which is then used to make suggestions to the user.

As the user provides more inputs or takes actions on the recommendations, the weighted average vector of user becomes more accurate thus giving more accurate recommendations when data feeded is more.

Advantages :

Learns user's preferences

Highly personalized for the user

Disadvantages :

Low rated movie recommendation might occur if user choices were poor

Only genres watched and rated by user will be recommended and new genres will be hidden

User profile vector is highly static as the movie watched by user is mostly based on user's mentality and not user's previous history

Owner
Srinivasan K
Hi I am @srini165712 Sophomore student in PSG College of Technology Programming Enthusiast......
Srinivasan K
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Knowledge-aware Coupled Graph Neural Network for Social Recommendation

KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.

xhc 22 Nov 18, 2022
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

GHCF This is our implementation of the paper: Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2

Chong Chen 53 Dec 05, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022