Recommendation System to recommend top books from the dataset

Overview

recommendersystem

Recommendation System to recommend top books from the dataset

Introduction

The recom.py is the main program code.

The dataset is also added here under the name data_books.csv. Its a csv (comma separated value) file which contains 3 fields namely Reviewer, Book and Rating (from 1 to 10), separated by commas.

Pearson Correlation is used to find the correlation or similarity between two books. It is present in SciPy library under module name stats by name pearsonr function; but the main problem in this function is that it cannot handle ZeroDivisionError. So I have included my header file named function.py which overcome this problem.

Prerequisites

Libraries or Modules

The following libraries or modules are required to run this code and how to install them

  1. pandas
    pandas is a software library written for the Python programming language for data manipulation and analysis.
$ pip install pandas
  1. future
    future is the missing compatibility layer between Python 2 and Python 3. It allows you to use a single, clean Python 3.x-compatible codebase to support both Python 2 and Python 3 with minimal overhead.
    Here, we are using future division statement which changes the normal division operation.
$ pip install future
  1. numpy
    NumPy is the fundamental package for scientific computing with Python.
$ pip install numpy

Theoretical Concept

The following concept is also required

  1. Pearson Correlation
    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations.
    OR
    Pearson correlation score measures how much 2 variables change together divided by the product of how much they change individually. The more the variables change together relative to how they change individually, the higher the correlation.
    It has a value between +1 and −1, where 1 is total positive linear correlation, 0 is no linear correlation, and −1 is total negative linear correlation.

Execution

The code can be run by simply writing following command in the terminal

$ python recom.py

Built with

  • Python

Author

Acknowledgments

Owner
Vishal karur
Vishal karur
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022