Mutual Fund Recommender System. Tailor for fund transactions.

Overview

Explainable Mutual Fund Recommendation

Data

Please see 'DATA_DESCRIPTION.md' for mode detail.

Recommender System Methods

Baseline

  • Collabarative Fiiltering
  • PersonFreq
  • PersonVolume

Stable

  • LightFM Meta
  • LightFM PureCF
  • LightFM Hybrid

Advanced

  • DGL
  • GCN

Part I: Fund Recommedation

Training

Supported models
  1. Heuristic
  2. LightFM (CF/Hybrid/Meta)
  3. SMORe
# Process 3 models in parallel
bash run_all.sh 
   

   
Arugments

You can also tune the detail parameter settings of each method in training pipeline.

--use_heuristic ">
# Commonly used arguments 
--model 
    
     
--model_type 
     
      
--model_hidden_dimension 
      
       
--evaluation_metrics 
       
        
--use_heuristic 
         
        
       
      
     
    

For example, LightFM with pure-CF method

EPOCHS=10
EMBED_SIZE=64
DATE=20181231

python3 train.py \
   --path_transaction data/${DATE}/transaction_train.csv \
   --path_transaction_eval data/${DATE}/transaction_eval.csv \
   --path_user data/${DATE}/customer.csv \
   --path_item data/${DATE}/product.csv \
   --model 'LightFM' \
   --model_path 'models/lightfm' \
   --model_type 'cf' \
   --model_hidden_dimension ${EMBED_SIZE} \
   --model_max_neg_sample 100 \
   --model_loss 'warp' \
   --training_do_evaluation \
   --training_verbose \
   --training_num_epochs ${EPOCHS} \
   --training_eval_per_epochs 1 \
   --evaluation_diff \
   --evaluation_regular \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --use_heuristic 'frequency' \
   --use_heuristic 'volume' \
   --evaluation_results_csv results/lightfm_cf_evaluation_${DATE}.csv \
   --evaluation_rec_detail_report results/lightfm_cf_rec_detail_${DATE}.tsv \
       > logs/lightfm_cf_exp_${DATE}.log

For another example, SMORe

python3 train.py \
   --path_transaction data/${DATE}/transaction_train.csv \
   --path_transaction_eval data/${DATE}/transaction_eval.csv \
   --path_user data/${DATE}/customer.csv \
   --path_item data/${DATE}/product.csv \
   --model 'SMORe' \
   --model_path 'models/smore' \
   --model_hidden_dimension ${EMBED_SIZE} \
   --model_max_neg_sample 100 \
   --model_loss 'warp' \
   --training_do_ \
   --training_verbose \
   --training_num_epochs ${EPOCHS} \
   --training_eval_per_epochs 1 \
   --evaluation_diff \
   --evaluation_regular \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_results_csv results/smore_evaluation_${DATE}.csv \
   --evaluation_rec_detail_report results/smore_rec_detail_${DATE}.tsv \
       > logs/smore_exp_${DATE}.log

Evaluataion

To use the evaluation pipeline, you need a prediction rec file with the format like the example below:

# prediction rec file 
   
    \t
    
     \t
     
      \t
      
       \t
       
        \t
        
          CFDAXWccjJPoVInuiF0mMg== AG25 EXPLOIT SOLO 0 2 CFDAXWccjJPoVInuiF0mMg== XXXX EXPLOIT SOLO 0 1 CFDAXWccjJPoVInuiF0mMg== JJ15 EXPLOIT REGULAR 0 2 CFDAXWccjJPoVInuiF0mMg== XXXX EXPLOIT REGULAR 0 1 CFDAwH4y/ssuYSedFy8UMw== CC89 EXPLOIT REGULAR 0 2 CFDAwH4y/ssuYSedFy8UMw== XXXX EXPLOIT REGULAR 0 1 CFDA9UDJnLAm4/0txbPMVQ== AP06 EXPLORE NA 0 2 CFDA9UDJnLAm4/0txbPMVQ== XXXX EXPLORE NA 0 1 
        
       
      
     
    
   

Later you could directly use the evaluate pipeline

bash rec_convert_eval.sh 
   

   

In the evaluation pipeline, you need to convert the ground truth interaction into '.rec' format. For xample.

# truth rec file 
   
    \t
    
     \t
     
      \t
      
       \t
       
         CFDAXWccjJPoVInuiF0mMg== AG25 EXPLOIT SOLO 1.0 CFDAXWccjJPoVInuiF0mMg== JJ15 EXPLOIT REGULAR 1.0 CFDAwH4y/ssuYSedFy8UMw== CC89 EXPLOIT REGULAR 1.0 CFDA9UDJnLAm4/0txbPMVQ== AP06 EXPLORE NA 1.0 
       
      
     
    
   

Convert from the evaluation transaction (includes the preprocess pipeline) by the following code, which will save the corresponding rec file in the defined argument '--path_trainsaction_truth'

DATE=20181231
python3 convert_to_rec.py \
    --path_transaction data/${DATE}/transaction_train.csv \
    --path_transaction_eval data/${DATE}/transaction_eval.csv \
    --path_user data/${DATE}/customer.csv \
    --path_item data/${DATE}/product.csv \
    --path_transaction_truth rec/${DATE}.eval.truth.rec

And evaluate by the code "rec_eval.py"

DATE=20181231
python3 rec_eval.py \
   -truth rec/${DATE}.eval.truth.rec \ 
   -pred rec/pred.rec \     
   -metric '[email protected]' \          
   -metric '[email protected]' \          
   -metric '[email protected]' \
   -metric '[email protected]'

The results would be like

TRUTH REC FILE EXISTED:  'rec/20181231.eval.truth.rec'

EvalDict({                
          SUBSET     USERS     EXAMPLES 
        * EXPLORE    2305      2826     
        * EXPLOIT    33355     62403    
        * REGULAR    31763     59054    
        * SOLO       2747      3349                     
})
==============================
 [email protected]     on EXPLORE    0.0001
 [email protected]     on EXPLORE    0.0004
 [email protected]   on EXPLORE    0.0004
 [email protected]   on EXPLORE    0.0004
 [email protected]     on EXPLOIT    0.0000
 [email protected]     on EXPLOIT    0.0001
 [email protected]   on EXPLOIT    0.0001
 [email protected]   on EXPLOIT    0.0001
 [email protected]     on REGULAR    0.0000
 [email protected]     on REGULAR    0.0001
 [email protected]   on REGULAR    0.0001
 [email protected]   on REGULAR    0.0001
 [email protected]     on SOLO       0.0001
 [email protected]     on SOLO       0.0004
 [email protected]   on SOLO       0.0004
 [email protected]   on SOLO       0.0004
==============================

Results

Methods [email protected] [email protected] [email protected] [email protected]
Collabarative Fiiltering - - -
PersonFreq - - -
PersonVolume - - -
LightFM Meta - - -
LightFM PureCF - - -
LightFM Hybrid 0.000 0.000 0.000 0.000
DGL - - -
GCN - - -

Fund Explanation

Owner
JHJu
Research assistant @ cnc Lab, ASCITI
JHJu
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase

Jose A Dianes 794 Dec 23, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022