6D Grasping Policy for Point Clouds

Overview

GA-DDPG

[website, paper]

image

Installation

git clone https://github.com/liruiw/GA-DDPG.git --recursive
  1. Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, python 2.7 / 3.6

    • (Required for Training) - Install OMG submodule and reuse conda environment.
    • (Docker) See OMG Docker for details.
    • (Demo) - Install GA-DDPG inside a new conda environment
      conda create --name gaddpg python=3.6.9
      conda activate gaddpg
      pip install -r requirements.txt
      
  2. Install PointNet++

  3. Download environment data bash experiments/scripts/download_data.sh

Pretrained Model Demo

  1. Download pretrained models bash experiments/scripts/download_model.sh
  2. Demo model test bash experiments/scripts/test_demo.sh
Example 1 Example 2

Save Data and Offline Training

  1. Download example offline data bash experiments/scripts/download_offline_data.sh The .npz dataset (saved replay buffer) can be found in data/offline_data and can be loaded for training.
  2. To save extra gpus for online rollouts, use the offline training script bash ./experiments/scripts/train_offline.sh bc_aux_dagger.yaml BC
  3. Saving dataset bash ./experiments/scripts/train_online_save_buffer.sh bc_save_data.yaml BC.

Online Training and Testing

  1. We use ray for parallel rollout and training. The training scripts might require adjustment according to the local machine. See config.py for some notes.
  2. Training online bash ./experiments/scripts/train_online_visdom.sh td3_critic_aux_policy_aux.yaml DDPG. Use visdom and tensorboard to monitor.
  3. Testing on YCB objects bash ./experiments/scripts/test_ycb.sh demo_model. Replace demo_model with trained models. Logs and videos would be saved to output_misc

Note

  1. Checkout core/test_realworld_ros_final.py for an example of real-world usages.
  2. Related Works (OMG, ACRONYM, 6DGraspNet, 6DGraspNet-Pytorch, ContactGraspNet, Unseen-Clustering)
  3. To use the full Acronym dataset with Shapenet meshes, please follow ACRONYM to download the meshes and grasps and follow OMG-Planner to process and save in /data. filter_shapenet.json can then be used for training.
  4. Please use Github issue tracker to report bugs. For other questions please contact Lirui Wang.

File Structure

├── ...
├── GADDPG
|   |── data 		# training data
|   |   |── grasps 		# grasps from the ACRONYM dataset
|   |   |── objects 		# object meshes, sdf, urdf, etc
|   |   |── robots 		# robot meshes, urdf, etc
|   |   └── gaddpg_scenes	 	# test scenes
|   |── env 		# environment-related code
|   |   |── panda_scene 		# environment and task
|   |   └── panda_gripper_hand_camera 		# franka panda with gripper and camera
|   |── OMG 		# expert planner submodule
|   |── experiments 		# experiment scripts
|   |   |── config 		# hyperparameters for training, testing and environment
|   |   |── scripts 		# main running scripts
|   |   |── model_spec 		# network architecture spec
|   |   |── cfgs 		# experiment config and hyperparameters
|   |   └── object_index 		# object indexes
|   |── core 		# agents and learning
|   |   |──  train_online 		# online training
|   |   |──  train_test_offline 	# testing and offline training
|   |   |──  network 		# network architecture
|   |   |──  test_realworld_ros_final 		# real-world script example
|   |   |──  agent 		# main agent code
|   |   |──  replay_memory 		# replay buffer
|   |   |──  trainer 	# ray-related training setup
|   |   └── ...
|   |── output 		# trained model
|   |── output_misc 	# log and videos
|   └── ...
└── ...

Citation

If you find GA-DDPG useful in your research, please consider citing:

@inproceedings{wang2020goal,
	author    = {Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and Dieter Fox},
	title     = {Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds},
	booktitle = {arXiv:2010.00824},
	year      = {2020}
}

License

The GA-DDPG is licensed under the MIT License.

Owner
Lirui Wang
MIT CSAIL Ph.D. Student. Previous UWCSE and NVIDIA.
Lirui Wang
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
LBK 20 Dec 02, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022