EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

Overview

EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

Paper on arXiv

EquiBind, is a SE(3)-equivariant geometric deep learning model performing direct-shot prediction of both i) the receptor binding location (blind docking) and ii) the ligand’s bound pose and orientation. EquiBind achieves significant speed-ups and better quality compared to traditional and recent baselines. If you have questions, don't hesitate to open an issue or ask me via [email protected] or social media or Octavian Ganea via [email protected]. We are happy to hear from you!

Dataset

Our preprocessed data (see dataset section in the paper Appendix) is available from zenodo.
The files in data contain the names for the time-based data split.

If you want to train one of our models with the data then:

  1. download it from zenodo
  2. unzip the directory and place it into data such that you have the path data/PDBBind

Use provided model weights to predict binding structure of your own protein-ligand pairs:

Step 1: What you need as input

Ligand files of the formats .mol2 or .sdf or .pdbqt or .pdb.
Receptor files of the format .pdb
For each complex you want to predict you need a directory containing the ligand and receptor file. Like this:

my_data_folder
└───name1
    │   name1_protein.pdb
    │   name1_ligand.sdf
└───name2
    │   name2_protein.pdb
    │   name2_ligand.sdf
...

Step 2: Setup Environment

We will set up the environment using Anaconda. Clone the current repo

git clone https://github.com/HannesStark/EquiBind

Create a new environment with all required packages using environment.yml (this can take a while). While in the project directory run:

conda env create

Activate the environment

conda activate equibind

Here are the requirements themselves if you want to install them manually instead of using the environment.yml:

python=3.7
pytorch 1.10
torchvision
cudatoolkit=10.2
torchaudio
dgl-cuda10.2
rdkit
openbabel
biopython
rdkit
biopandas
pot
dgllife
joblib
pyaml
icecream
matplotlib
tensorboard

Step 3: Predict Binding Structures!

In the config file configs_clean/inference.yml set the path to your input data folder inference_path: path_to/my_data_folder.
Then run:

python inference.py --config=configs_clean/inference.yml

Done! 🎉
Your results are saved as .sdf files in the directory specified in the config file under output_directory: 'data/results/output' and as tensors at runs/flexible_self_docking/predictions_RDKitFalse.pt!

Reproducing paper numbers

Download the data and place it as described in the "Dataset" section above.

Using the provided model weights

To predict binding structures using the provided model weights run:

python inference.py --config=configs_clean/inference_file_for_reproduce.yml

This will give you the results of EquiBind-U and then those of EquiBind after running the fast ligand point cloud fitting corrections.
The numbers are a bit better than what is reported in the paper. We will put the improved numbers into the next update of the paper.

Training a model yourself and using those weights

To train the model yourself, run:

python train.py --config=configs_clean/RDKitCoords_flexible_self_docking.yml

The model weights are saved in the runs directory.
You can also start a tensorboard server tensorboard --logdir=runs and watch the model train.
To evaluate the model on the test set, change the run_dirs: entry of the config file inference_file_for_reproduce.yml to point to the directory produced in runs. Then you can runpython inference.py --config=configs_clean/inference_file_for_reproduce.yml as above!

Reference

📃 Paper on arXiv

@misc{stark2022equibind,
      title={EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction}, 
      author={Hannes Stärk and Octavian-Eugen Ganea and Lagnajit Pattanaik and Regina Barzilay and Tommi Jaakkola},
      year={2022}
}
Owner
Hannes Stärk
MIT Research Intern • Geometric DL + Graphs :heart: • M. Sc. Informatics from TU Munich
Hannes Stärk
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021