The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Related tags

Deep LearningAcT
Overview

arXiv License: GPL v3

Action Transformer
A Self-Attention Model for Short-Time Human Action Recognition

AcT Summary

This repository contains the official TensorFlow implementation of the paper "Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition".

Action Transformer (AcT), a simple, fully self-attentional architecture that consistently outperforms more elaborated networks that mix convolutional, recurrent and attentive layers. In order to limit computational and energy requests, building on previous human action recognition research, the proposed approach exploits 2D pose representations over small temporal windows, providing a low latency solution for accurate and effective real-time performance.

To do so, we open-source MPOSE2021, a new large-scale dataset, as an attempt to build a formal training and evaluation benchmark for real-time, short-time HAR. MPOSE2021 is developed as an evolution of the MPOSE Dataset [1-3]. It is made by human pose data detected by OpenPose [4] and Posenet [5] on popular datasets for HAR.

AcT Results

This repository allows to easily run a benchmark of AcT models using MPOSE2021, as well as executing a random hyperparameter search.

Usage

First, clone the repository and install the required pip packages (virtual environment recommended!).

pip install -r requirements.txt

To run a random search:

python main.py -s

To run a benchmark:

python main.py -b

That's it!

This code uses the mpose pip package, a friendly tool to download and process MPOSE2021 pose data.

Citations

AcT is intended for scientific research purposes. If you want to use this repository for your research, please cite our work (Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition) as well as [1-5].

@article{mazzia2021action,
  title={Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition},
  author={Mazzia, Vittorio and Angarano, Simone and Salvetti, Francesco and Angelini, Federico and Chiaberge, Marcello},
  journal={Pattern Recognition},
  pages={108487},
  year={2021},
  publisher={Elsevier}
}

References

[1] Angelini, F., Fu, Z., Long, Y., Shao, L., & Naqvi, S. M. (2019). 2D Pose-Based Real-Time Human Action Recognition With Occlusion-Handling. IEEE Transactions on Multimedia, 22(6), 1433-1446.

[2] Angelini, F., Yan, J., & Naqvi, S. M. (2019, May). Privacy-preserving Online Human Behaviour Anomaly Detection Based on Body Movements and Objects Positions. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8444-8448). IEEE.

[3] Angelini, F., & Naqvi, S. M. (2019, July). Joint RGB-Pose Based Human Action Recognition for Anomaly Detection Applications. In 2019 22th International Conference on Information Fusion (FUSION) (pp. 1-7). IEEE.

[4] Cao, Z., Hidalgo, G., Simon, T., Wei, S. E., & Sheikh, Y. (2019). OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE transactions on pattern analysis and machine intelligence, 43(1), 172-186.

[5] Papandreou, G., Zhu, T., Chen, L. C., Gidaris, S., Tompson, J., & Murphy, K. (2018). Personlab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 269-286).

[6] Mazzia, V., Angarano, S., Salvetti, F., Angelini, F., & Chiaberge, M. (2021). Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition. Pattern Recognition, 108487.

What?!

Owner
PIC4SeRCentre
Politecnico di Torino Interdepartmental Centre for Service Robotics
PIC4SeRCentre
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022