Language Models Can See: Plugging Visual Controls in Text Generation

Overview

Language Models Can See: Plugging Visual Controls in Text Generation

Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lingpeng Kong, and Nigel Collier

This repository contains code, models, and other related resources of our paper [Language Models Can See: Plugging Visual Controls in Text Generation].

If you are also interested in open-ended text generation and would like to see more details of our contrastive search decoding method, please refer to our SimCTG [paper] and [repo].

Replicate has provided a great web [demo] of MAGIC that is super easy to use and to interact with. Check it out!


MAGIC


Catalogue:


1. Introduction:

Generative language models (LMs) such as GPT-2/3 can be prompted to generate text with remarkable quality. While they are designed for text-prompted generation, it remains an open question how the generation process could be guided by modalities beyond text such as images. In this work, we propose a training-free framework, called MAGIC (iMAge-Guided text generatIon with CLIP), for plugging in visual controls in the generation process and enabling LMs to perform multimodal tasks (e.g., image captioning) in a zero-shot manner. MAGIC is a simple yet efficient plug-and-play framework, which directly combines an off-the-shelf LM (i.e., GPT-2) and an image-text matching model (i.e., CLIP) for image-grounded text generation. During decoding, MAGIC influences the generation of the LM by introducing a CLIP-induced score, called magic score, which regularizes the generated result to be semantically related to a given image while being coherent to the previously generated context. Notably, the proposed decoding scheme does not involve any gradient update operation, therefore being computationally efficient. On the challenging task of zero-shot image captioning, MAGIC outperforms the state-of-the-art method by notable margins with a nearly 27 times decoding speedup. MAGIC is a flexible framework and is theoretically compatible with any text generation tasks that incorporate image grounding. In the experiments, we showcase that it is also capable of performing visually grounded story generation given both an image and a text prompt.


2. News:

  • [2022/05/06] MAGIC is publicly released!

3. Citation:

If you find our paper and resources useful, please kindly leave a star and cite our papers. Thanks!

@article{DBLP:journals/corr/abs-2205-02655,
  author    = {Yixuan Su and
               Tian Lan and
               Yahui Liu and
               Fangyu Liu and
               Dani Yogatama and
               Yan Wang and
               Lingpeng Kong and
               Nigel Collier},
  title     = {Language Models Can See: Plugging Visual Controls in Text Generation},
  journal   = {CoRR},
  volume    = {abs/2205.02655},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2205.02655},
  doi       = {10.48550/arXiv.2205.02655},
  eprinttype = {arXiv},
  eprint    = {2205.02655},
  timestamp = {Wed, 11 May 2022 17:29:40 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2205-02655.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/abs-2202-06417,
  author    = {Yixuan Su and
               Tian Lan and
               Yan Wang and
               Dani Yogatama and
               Lingpeng Kong and
               Nigel Collier},
  title     = {A Contrastive Framework for Neural Text Generation},
  journal   = {CoRR},
  volume    = {abs/2202.06417},
  year      = {2022},
  url       = {https://arxiv.org/abs/2202.06417},
  eprinttype = {arXiv},
  eprint    = {2202.06417},
  timestamp = {Fri, 18 Feb 2022 12:23:53 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2202-06417.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

4. Environment Setup:

python version: 3.8
pip3 install -r requirements.txt

5. Zero-Shot Image Captioning:

5.1. Implementation of Experiments:

To ensure the reproductity of our work, we provide all related resources to implement our experiments on the task of zero-shot image captioning. Please refer more details [here].

5.2. Example Usage of Magic Search:

In the following, we illustrate how to perform zero-shot image captioning with magic search. Specifically, we show how to generate the results as shown in our case study in the paper.

Open In Colab

5.2.1. Load Language Model:

We first load the language model as:

import sys
sys.path.append(r'./image_captioning/language_model/')
from simctg import SimCTG
language_model_name = r'cambridgeltl/magic_mscoco'
sos_token, pad_token = r'<-start_of_text->', r'<-pad->'
generation_model = SimCTG(language_model_name, sos_token, pad_token)
generation_model.eval()
5.2.2. Load CLIP:

Then, we load the CLIP model as:

import sys
sys.path.append(r'./image_captioning/clip/')
from clip import CLIP
model_name = "openai/clip-vit-base-patch32"
clip = CLIP(model_name)
clip.eval()
5.2.3. Prepare Start Token:

Note that, the language model always starts generation with a start of sentence token. Here, we prepare the input ids of the start token.

import torch
sos_token = r'<-start_of_text->'
start_token = generation_model.tokenizer.tokenize(sos_token)
start_token_id = generation_model.tokenizer.convert_tokens_to_ids(start_token)
input_ids = torch.LongTensor(start_token_id).view(1,-1)
5.2.4. Load Image:

To generate the caption of a random image, we need to load the image as:

from PIL import Image             # to load images
from IPython.display import display # to display images
image_name_list = ['COCO_val2014_000000336777.jpg', 'COCO_val2014_000000182784.jpg', 'COCO_val2014_000000299319.jpg', 'COCO_val2014_000000516750.jpg',
                   'COCO_val2014_000000207151.jpg', 'COCO_val2014_000000078707.jpg', 'COCO_val2014_000000027440.jpg', 'COCO_val2014_000000033645.jpg',
                   'COCO_val2014_000000348905.jpg', 'COCO_val2014_000000545385.jpg', 'COCO_val2014_000000210032.jpg', 'COCO_val2014_000000577526.jpg']
index = 1 
'''
   you can easily reproduce all results shown in our case study (index from 0 to 3) 
   and the results in the appendix (index from 4 to 11).
'''

image_path = r'./image_captioning/example_images/' + image_name_list[index]
image_instance = Image.open(image_path)
display(image_instance)
5.2.5. Zero-Shot Image Captioning with Magic Search:

Now, let's generate the image caption with magic search!

'''
   setup the configurations of magic search
      k: the k in magic search
      alpha: the alpha in magic search
      beta: the beta in magic search
      decoding_len: the number of tokens to generate
'''
k, alpha, beta, decoding_len = 45, 0.1, 2.0, 16
eos_token = '<|endoftext|>'
output = generation_model.magic_search(input_ids, k, 
        alpha, decoding_len, beta, image_instance, clip, 60)
print (output)
'''
   A large cow standing in a street stall.
'''
5.2.6. Reproduce Our Results in the Paper:

If you would like to reproduce all the results shown in the case study and appendix of our paper, you can run this demo file as

python image_caption_demo.py

6. Visually Grounded Story Generation:

6.1. Implementation of Experiments:

To ensure the reproductity of our work, we provide all related resources to implement our experiments on the task of visually grounded story generation. Please refer more details [here].

6.2. Example Usage of Magic Search:

In the following, we illustrate how to perform visually grounded story generation with magic search. Specifically, we show how to generate the results as shown in our case study in the paper.

Open In Colab

6.2.1. Load Language Model:

We first load the language model and prepare the story title as:

import sys
sys.path.append(r'./story_generation/language_model')
from transformers import AutoTokenizer
from simctg import SimCTG
language_model_name = r'cambridgeltl/simctg_rocstories'
tokenizer = AutoTokenizer.from_pretrained(language_model_name)
generation_model = SimCTG(language_model_name, tokenizer.pad_token_id)
generation_model.eval()

import torch
title = 'Ice Cream Tasting <|endoftext|>'
title_tokens = tokenizer.tokenize(title)
title_id_list = tokenizer.convert_tokens_to_ids(title_tokens)
title_ids = torch.LongTensor(title_id_list).view(1,-1)
6.2.2. Load CLIP:

Then, we load the CLIP model as:

import sys
sys.path.append(r'./story_generation/clip')
from clip import CLIP
model_name = "openai/clip-vit-base-patch32"
clip = CLIP(model_name)
clip.eval()
6.3.2. Get the Related Image:

Next, let's get the images that are related to the story tile. We provide two ways of doing it as shown below:

6.3.2.1. Retrieve from Image Index:

The first way is to retrieve the images from a constructed image index. Before running the following commands, please make sure you have built the image index from scrath as described [here] or downloaded our provided image index as described [here].

After the image index is ready, we can load the image index as

# build image index
import sys
sys.path.append(r'./story_generation/image_index')
from imageindex import ImageIndex
index_path = r'./story_generation/data/image_index/images_index_data/index_matrix.txt'
mapping_dict_path = r'./story_generation/data/image_index/images_index_data/mapping_dict.json'
image_folder_prefix_path = r'./story_generation/data/image_index/images/'
index = ImageIndex(index_path, mapping_dict_path, image_folder_prefix_path, clip)

Then, we can retrieve the top-1 images as

image_name_list, image_instance_list = index.search_image(title, top_k=1)
'''
   image_name_list: the list of names of the retrieved images
   image_instance_list: the list of images that we retrieve
'''

Let's see the retrieved images we got

from IPython.display import display
# display the top-1 image
display(image_instance_list[0])
6.3.2.2. Directly Load Image:

Alternatively, if you have not prepared the image index, we have provided these the image in the repo. You can directly load it as

from PIL import Image
image_name_list = ['avopix-284658167.jpg']
image_instance_list = []
for name in image_name_list:
    image_path = r'./story_generation/example_images/' + name
    image_instance = Image.open(image_path)
    image_instance_list.append(image_instance)
6.3.3. Visually Grounded Story Generation with Magic Search:

[Note] Recall that, in this example, our story title is 'Ice Cream Tasting <|endoftext|>'.

Now, let's generate the story conditioned on the retrieved image

from IPython.display import display
k, alpha, beta, decoding_len  = 5, 0.6, 0.15, 100
'''
   The k, alpha, beta correspond to the k, alpha, beta in magic search
'''
image_instance = image_instance_list[0]
eos_token = r'<|endoftext|>'
output, _ = generation_model.magic_search(title_ids, k, alpha, decoding_len, beta, image_instance, 
        clip, 60, eos_token)
_, generated_story = generation_model.parse_generated_result(output, num_of_sentences_to_keep=5)
print (generated_story)
display(image_instance)
'''
   My family went to a ice cream shop. They ordered three flavors of ice cream. The first one was 
   strawberry, the second was chocolate, and the third was orange. I was excited to try all three 
   flavors. It was very good and I had a great time at the ice cream shop.
'''

Then, let's see what we can get using the vanilla contrastive search without the image grounding.

k, alpha, decoding_len  = 5, 0.6, 100
'''
   The k and alpha correspond to the k and alpha in contrastive search
'''
eos_token = r'<|endoftext|>'
output, _ = generation_model.fast_contrastive_search(title_ids, k, alpha, decoding_len, eos_token)
_, generated_story = generation_model.parse_generated_result(output, num_of_sentences_to_keep=5)
print (generated_story)
'''
   My family went to a ice cream shop. We ordered the Ice Cream Truck. It was delicious. The customer 
   service was terrible. We had to leave for another day.
'''
6.3.4. Reproduce Our Results in the Paper:

If you would like to reproduce all the results shown in the case study and appendix of our paper, you can run this demo file as

python story_generation_demo.py

7. Contact

If you have any questions, feel free to contact me via (ys484 at cam.ac.uk).


8. MAGIC Elsewhere

We thank the community's effort for extending MAGIC!

  • Replicate has provided a great [demo] of MAGIC that is super easy to use. Thanks for the effort!
Owner
Yixuan Su
I am a third-year (final-year) Ph.D. student at the Language Technology Lab of the University of Cambridge.
Yixuan Su
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021