Estimating Example Difficulty using Variance of Gradients

Overview

Estimating Example Difficulty using Variance of Gradients

This repository contains source code necessary to reproduce some of the main results in the paper:

If you use this software, please consider citing:

@article{agarwal2020estimating, 
title={Estimating Example Difficulty using Variance of Gradients},
author={Agarwal, Chirag and Hooker, Sara},
journal={arXiv preprint arXiv:2008.11600},
year={2020}
}

1. Setup

Installing software

This repository is built using a combination of TensorFlow and PyTorch. You can install the necessary libraries by pip installing the requirements text file pip install -r ./requirements_tf.txt and pip install -r ./requirements_pytorch.txt

2. Usage

Toy experiment

toy_script.py is the script for running toy dataset experiment. You can analyze the training/testing data at diffferent stages of the training, viz. Early, Middle, and Late, using the flags split and mode. The vog_cal flag enables visualizing different versions of VOG scores such as the raw score, class normalized, or the absolute class normalized scores.

Examples

Running python3 toy_script.py --split test --mode early --vog_cal normalize generates the toy dataset decision boundary figure along with the relation between the perpendicular distance of individual points from the decision boundary and the VOG scores. The respective figures are:

Left: The visualization of the toy dataset decision boundary with the testing data points. The Multiple Layer Perceptron model achieves 100% training accuracy. Right: The scatter plot between the Variance of Gradients (VoGs) for each testing data point and their perpendicular distance shows that higher scores pertain to the most challenging examples (closest to the decision boundary)

ImageNet

The main scripts for the ImageNet experiments are in the ./imagenet/ folder.

  1. Before calculating the VOG scores you would need to store the gradients of the respective images in the ./scripts/train.txt/ file using model snapshots. For demonstration purpose, we have shared the model weights of the late stage, i.e. steps 30024, 31275, and 32000. Now, for example, we want to store the gradients for the imagenet dataset (stored as /imagenet_dir/train) at snapshot 32000, we run the shell script train_get_gradients.sh like:

source train_get_gradients.sh 32000 ./imagenet/train_results/ 9 ./scripts/train.txt/

  1. For this repo, we have generated the gradients for 100 random images for the late stage training process and stored the results in ./imagenet/train_results/. To generate the error rate performance at different VOG deciles run train_visualize_grad.py using the following command. python train_visualize_grad.py

On analyzing the VOG score for a particular class (e.g. below are magpie and pop bottle) in the late training stage, we found two unique groups of images. In this work, we hypothesize that examples that a model has difficulty learning (images on the right) will exhibit higher variance in gradient updates over the course of training (. On the other hand, the gradient updates for the relatively easier examples are expected to stabilize early in training and converge to a narrow range of values.

Each 5×5 grid shows the top-25 ImageNet training-set images with the lowest (left column) and highest (right column) VOG scores for the class magpie and pop bottle with their predicted labels below the image. Training set images with higher VOG scores (b) tend to feature zoomed-in images with atypical color schemes and vantage points.

4. Licenses

Note that the code in this repository is licensed under MIT License, but, the pre-trained condition models used by the code have their own licenses. Please carefully check them before use.

5. Questions?

If you have questions/suggestions, please feel free to email or create github issues.

Owner
Chirag Agarwal
Researching the Unknown
Chirag Agarwal
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022