Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

Overview

structshot

Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arzoo Katiyar, in EMNLP 2020.

Data

Due to license reason, we are only able to release the full CoNLL 2003 and WNUT 2017 dataset. We also release the support sets that we sampled from the CoNLL/WNUT/I2B2 dev sets to enable the reproducing of our evaluation results.

CoNLL 2003

The CoNLL 2003 NER train/dev/test datasets are data/train.txt, data/dev.txt, and data/test.txt respectively. The labels are available in data/labels.txt.

WNUT 2017

The WNUT 2017 NER dev/test datasets are data/dev-wnut.txt and data/test-wnut.txt respectively. The labels are available in data/labels-wnut.txt.

Support sets for CoNLL 2003, WNUT 2017, and I2B2 2014

The one-shot and five-shot support sets used in the paper are available in data/support-* folders.

Usage

Due to data license limitation, we will show how to do five-shot transfer learning from the CoNLL 2003 dataset to the WNUT 2017 dataset, instead of transfering from the OntoNotes 5 dataset, as presented in our paper.

The first step is to install the package and cd into the structshot directory:

pip install -e .
cd structshot

Pretrain BERT-NER model

The marjority of the code is copied from the HuggingFace transformers repo, which is used to pretrain a BERT-NER model:

# Pretrain a conventional BERT-NER model on CoNLL 2003 
bash run_pl.sh

In our paper, we actually merged B- and I- tags together for pretraining as well.

Few-shot NER with NNShot

Given the pretrained model located at output-model/checkpointepoch=2.ckpt, we now can perform five-shot NER transfer on the WNUT test set:

# Five-shot NER with NNShot
bash run_pred.sh output-model/checkpointepoch=2.ckpt NNShot

We use the IO tagging scheme rather than the BIO tagging scheme due to its simplicity and better performance. I obtained 22.8 F1 score.

Few-shot NER with StructShot

Given the same pretrained model, simply run:

# Five-shot NER with StructShot
bash run_pred.sh output-model/checkpointepoch=2.ckpt StructShot

I obtained 29.5 F1 score. You can tune the parameter tau in the run_pred.sh script based on dev set performance.

Notes

There are a few differences between this implementation and the one reported in the paper due to data license reason etc.:

  • This implementation pretrains the BERT-NER model with the BIO tagging scheme, while in our paper we uses the IO tagging scheme.
  • This implementation performs five-shot transfer learning from CoNLL 2003 to WNUT 2017, while in our paper we perform five-shot transfer learning from OntoNotes 5 to CoNLL'03/WNUT'17/I2B2'14.

If you can access OntoNotes 5 and I2B2'14, reproducing the results of the paper should be trivial.

Owner
ASAPP Research
AI for Enterprise
ASAPP Research
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022