[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

Overview

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion

This repository is the official implementation of paper: "Unsupervised Point Cloud Pre-training via Occlusion Completion"

[Paper] [Project Page]

Intro

image

In this work, we train a completion model that learns how to reconstruct the occluded points, given the partial observations. In this way, our method learns a pre-trained encoder that can identify the visual constraints inherently embedded in real-world point clouds.

We call our method Occlusion Completion (OcCo). We demonstrate that OcCo learns representations that: improve generalization on downstream tasks over prior pre-training methods, transfer to different datasets, reduce training time, and improve labeled sample efficiency.

Citation

Our paper is preprinted on arxiv:

@inproceedings{OcCo,
	title = {Unsupervised Point Cloud Pre-Training via Occlusion Completion},
	author = {Hanchen Wang and Qi Liu and Xiangyu Yue and Joan Lasenby and Matthew J. Kusner},
	year = 2021,
	booktitle = {International Conference on Computer Vision, ICCV}
}

Usage

We provide codes in both PyTorch (1.3): OcCo_Torch and TensorFlow (1.13-1.15): OcCo_TF. We also provide with docker configuration docker. Our recommended development environment PyTorch + docker, the following descriptions are based on OcCo_Torch, we refer the readme in the OcCo_TF for the details of TensorFlow implementation.

1) Prerequisite

Docker

In the docker folder, we provide the build, configuration and launch scripts:

docker
| - Dockerfile_Torch  # configuration
| - build_docker_torch.sh  # scripts for building up from the docker images
| - launch_docker_torch.sh  # launch from the built image
| - .dockerignore  # ignore the log and data folder while building up 

which can be automatically set up as following:

# build up from docker images
cd OcCo_Torch/docker
sh build_docker_torch.sh

# launch the docker image, conduct completion/classification/segmentation experiments
cd OcCo_Torch/docker
sh launch_docker_torch.sh
Non-Docker Setup

Just go with pip install -r Requirements_Torch.txt with the PyTorch 1.3.0, CUDA 10.1, CUDNN 7 (otherwise you may encounter errors while building the C++ extension chamfer_distance for calculating the Chamfer Distance), my development environment besides docker is Ubuntu 16.04.6 LTS, gcc/g++ 5.4.0, cuda10.1, CUDNN 7.

2) Pre-Training via Occlusion Completion (OcCo)

Data Usage:

For the details in the data setup, please see data/readme.md.

Training Scripts:

We unify the training of all three models (PointNet, PCN and DGCNN) in train_completion.py as well as the bash templates, see bash_template/train_completion_template.sh for details:

#!/usr/bin/env bash

cd ../

# train pointnet-occo model on ModelNet, from scratch
python train_completion.py \
	--gpu 0,1 \
	--dataset modelnet \
	--model pointnet_occo \
	--log_dir modelnet_pointnet_vanilla ;

# train dgcnn-occo model on ShapeNet, from scratch
python train_completion.py \
	--gpu 0,1 \
	--batch_size 16 \
	--dataset shapenet \
	--model dgcnn_occo \
	--log_dir shapenet_dgcnn_vanilla ;
Pre-Trained Weights

We will provide the OcCo pre-trained models for all the three models here, you can use them for visualization of completing self-occluded point cloud, fine tuning on classification, scene semantic and object part segmentation tasks.

3) Sanity Check on Pre-Training

We use single channel values as well as the t-SNE for dimensionality reduction to visualize the learned object embeddings on objects from the ShapeNet10, while the encoders are pre-trained on the ModelNet40 dataset, see utils/TSNE_Visu.py for details.

We also train a Support Vector Machine (SVM) based on the learned embeddings object recognition. It is in train_svm.py. We also provide the bash template for this, see bash_template/train_svm_template.sh for details:

#!/usr/bin/env bash

cd ../

# fit a simple linear SVM on ModelNet40 with OcCo PCN
python train_svm.py \
	--gpu 0 \
	--model pcn_util \
	--dataset modelnet40 \
	--restore_path log/completion/modelnet_pcn_vanilla/checkpoints/best_model.pth ;

# grid search the best svm parameters with rbf kernel on ScanObjectNN(OBJ_BG) with OcCo DGCNN
python train_svm.py \
	--gpu 0 \
	--grid_search \
	--batch_size 8 \
	--model dgcnn_util \
	--dataset scanobjectnn \
	--bn \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;

4) Fine Tuning Task - Classification

Data Usage:

For the details in the data setup, please see data/readme.md.

Training/Testing Scripts:

We unify the training and testing of all three models (PointNet, PCN and DGCNN) in train_cls.py. We also provide the bash template for training each models from scratch, JigSaw/OcCo pre-trained checkpoints, see bash_template/train_cls_template.sh for details:

#!/usr/bin/env bash

cd ../

# training pointnet on ModelNet40, from scratch
python train_cls.py \
	--gpu 0 \
	--model pointnet_cls \
	--dataset modelnet40 \
	--log_dir modelnet40_pointnet_scratch ;

# fine tuning pcn on ScanNet10, using jigsaw pre-trained checkpoints
python train_cls.py \
	--gpu 0 \
	--model pcn_cls \
	--dataset scannet10 \
	--log_dir scannet10_pcn_jigsaw \
	--restore \
	--restore_path log/completion/modelnet_pcn_vanilla/checkpoints/best_model.pth ;

# fine tuning dgcnn on ScanObjectNN(OBJ_BG), using jigsaw pre-trained checkpoints
python train_cls.py \
	--gpu 0,1 \
	--epoch 250 \
	--use_sgd \
	--scheduler cos \
	--model dgcnn_cls \
	--dataset scanobjectnn \
	--bn \
	--log_dir scanobjectnn_dgcnn_occo \
	--restore \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;

# test pointnet on ModelNet40 from pre-trained checkpoints
python train_cls.py \
	--gpu 1 \
	--mode test \
	--model pointnet_cls \
	--dataset modelnet40 \
	--log_dir modelnet40_pointnet_scratch \
	--restore \
	--restore_path log/cls/modelnet40_pointnet_scratch/checkpoints/best_model.pth ;

5) Fine Tuning Task - Semantic Segmentation

Data Usage:

For the details in the data setup, please see data/readme.md.

Training/Testing Scripts:

We unify the training and testing of all three models (PointNet, PCN and DGCNN) in train_semseg.py. We also provide the bash template for training each models from scratch, JigSaw/OcCo pre-trained checkpoints, see bash_template/train_semseg_template.sh for details:

#!/usr/bin/env bash

cd ../

# train pointnet_semseg on 6-fold cv of S3DIS, from scratch
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--model pointnet_semseg \
	--bn_decay \
	--xavier_init \
	--test_area ${area} \
	--scheduler step \
	--log_dir pointnet_area${area}_scratch ;
done

# fine tune pcn_semseg on 6-fold cv of S3DIS, using jigsaw pre-trained weights
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--model pcn_semseg \
	--bn_decay \
	--test_area ${area} \
	--log_dir pcn_area${area}_jigsaw \
	--restore \
	--restore_path log/jigsaw/modelnet_pcn_vanilla/checkpoints/best_model.pth ;
done

# fine tune dgcnn_semseg on 6-fold cv of S3DIS, using occo pre-trained weights
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--test_area ${area} \
	--optimizer sgd \
	--scheduler cos \
	--model dgcnn_semseg \
	--log_dir dgcnn_area${area}_occo \
	--restore \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;
done

# test pointnet_semseg on 6-fold cv of S3DIS, from saved checkpoints
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--mode test \
	--model pointnet_semseg \
	--test_area ${area} \
	--scheduler step \
	--log_dir pointnet_area${area}_scratch \
	--restore \
	--restore_path log/semseg/pointnet_area${area}_scratch/checkpoints/best_model.pth ;
done
Visualization:

We recommended using relevant code snippets in RandLA-Net for visualization.

6) Fine Tuning Task - Part Segmentation

Data Usage:

For the details in the data setup, please see data/readme.md.

Training/Testing Scripts:

We unify the training and testing of all three models (PointNet, PCN and DGCNN) in train_partseg.py. We also provide the bash template for training each models from scratch, JigSaw/OcCo pre-trained checkpoints, see bash_template/train_partseg_template.sh for details:

#!/usr/bin/env bash

cd ../

# training pointnet on ShapeNetPart, from scratch
python train_partseg.py \
	--gpu 0 \
	--normal \
	--bn_decay \
	--xavier_init \
	--model pointnet_partseg \
    --log_dir pointnet_scratch ;


# fine tuning pcn on ShapeNetPart, using jigsaw pre-trained checkpoints
python train_partseg.py \
	--gpu 0 \
	--normal \
	--bn_decay \
	--xavier_init \
	--model pcn_partseg \
	--log_dir pcn_jigsaw \
	--restore \
	--restore_path log/jigsaw/modelnet_pcn_vanilla/checkpoints/best_model.pth ;


# fine tuning dgcnn on ShapeNetPart, using occo pre-trained checkpoints
python train_partseg.py \
	--gpu 0,1 \
	--normal \
	--use_sgd \
	--xavier_init \
	--scheduler cos \
	--model dgcnn_partseg \
	--log_dir dgcnn_occo \
	--restore \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;


# test fine tuned pointnet on ShapeNetPart, using multiple votes
python train_partseg.py \
	--gpu 1 \
	--epoch 1 \
	--mode test \
	--num_votes 3 \
	--model pointnet_partseg \
	--log_dir pointnet_scratch \
	--restore \
	--restore_path log/partseg/pointnet_occo/checkpoints/best_model.pth ;

6) OcCo Data Generation (Create Your Own Dataset for OcCo Pre-Training)

For the details in the self-occluded point cloud generation, please see render/readme.md.

7) Just Completion (Complete Your Own Data with Pre-Trained Model)

You can use it for completing your occluded point cloud data with our provided OcCo checkpoints.

8) Jigsaw Puzzle

We also provide our implementation (developed from scratch) on pre-training point cloud models via solving 3d jigsaw puzzles tasks as well as data generation, the method is described in this paper, while the authors did not reprocess to our code request. The details of our implementation is reported in our paper appendix.

For the details of our implementation, please refer to description in the appendix of our paper and relevant code snippets, i.e., train_jigsaw.py, utils/3DPC_Data_Gen.py and train_jigsaw_template.sh.

Results

Generated Dataset:

image

Completed Occluded Point Cloud:

-- PointNet:

image

-- PCN:

image

-- DGCNN:

image

-- Failure Examples:

image

Visualization of learned features:

image

Classification (linear SVM):

image

Classification:

image

##### Semantic Segmentation:

image

##### Part Segmentation:

image

Sample Efficiency:

image

Learning Efficiency:

image

For the description and discussion of the results, please refer to our paper, thanks :)

Contributing

The code of this project is released under the MIT License.

We would like to thank and acknowledge referenced codes from the following repositories:

https://github.com/wentaoyuan/pcn

https://github.com/hansen7/NRS_3D

https://github.com/WangYueFt/dgcnn

https://github.com/charlesq34/pointnet

https://github.com/charlesq34/pointnet2

https://github.com/PointCloudLibrary/pcl

https://github.com/AnTao97/dgcnn.pytorch

https://github.com/HuguesTHOMAS/KPConv

https://github.com/QingyongHu/RandLA-Net

https://github.com/chrdiller/pyTorchChamferDistance

https://github.com/yanx27/Pointnet_Pointnet2_pytorch

https://github.com/AnTao97/UnsupervisedPointCloudReconstruction

We appreciate the help from the supportive technicians, Peter and Raf, from Cambridge Engineering :)

[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022