[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

Overview

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion

This repository is the official implementation of paper: "Unsupervised Point Cloud Pre-training via Occlusion Completion"

[Paper] [Project Page]

Intro

image

In this work, we train a completion model that learns how to reconstruct the occluded points, given the partial observations. In this way, our method learns a pre-trained encoder that can identify the visual constraints inherently embedded in real-world point clouds.

We call our method Occlusion Completion (OcCo). We demonstrate that OcCo learns representations that: improve generalization on downstream tasks over prior pre-training methods, transfer to different datasets, reduce training time, and improve labeled sample efficiency.

Citation

Our paper is preprinted on arxiv:

@inproceedings{OcCo,
	title = {Unsupervised Point Cloud Pre-Training via Occlusion Completion},
	author = {Hanchen Wang and Qi Liu and Xiangyu Yue and Joan Lasenby and Matthew J. Kusner},
	year = 2021,
	booktitle = {International Conference on Computer Vision, ICCV}
}

Usage

We provide codes in both PyTorch (1.3): OcCo_Torch and TensorFlow (1.13-1.15): OcCo_TF. We also provide with docker configuration docker. Our recommended development environment PyTorch + docker, the following descriptions are based on OcCo_Torch, we refer the readme in the OcCo_TF for the details of TensorFlow implementation.

1) Prerequisite

Docker

In the docker folder, we provide the build, configuration and launch scripts:

docker
| - Dockerfile_Torch  # configuration
| - build_docker_torch.sh  # scripts for building up from the docker images
| - launch_docker_torch.sh  # launch from the built image
| - .dockerignore  # ignore the log and data folder while building up 

which can be automatically set up as following:

# build up from docker images
cd OcCo_Torch/docker
sh build_docker_torch.sh

# launch the docker image, conduct completion/classification/segmentation experiments
cd OcCo_Torch/docker
sh launch_docker_torch.sh
Non-Docker Setup

Just go with pip install -r Requirements_Torch.txt with the PyTorch 1.3.0, CUDA 10.1, CUDNN 7 (otherwise you may encounter errors while building the C++ extension chamfer_distance for calculating the Chamfer Distance), my development environment besides docker is Ubuntu 16.04.6 LTS, gcc/g++ 5.4.0, cuda10.1, CUDNN 7.

2) Pre-Training via Occlusion Completion (OcCo)

Data Usage:

For the details in the data setup, please see data/readme.md.

Training Scripts:

We unify the training of all three models (PointNet, PCN and DGCNN) in train_completion.py as well as the bash templates, see bash_template/train_completion_template.sh for details:

#!/usr/bin/env bash

cd ../

# train pointnet-occo model on ModelNet, from scratch
python train_completion.py \
	--gpu 0,1 \
	--dataset modelnet \
	--model pointnet_occo \
	--log_dir modelnet_pointnet_vanilla ;

# train dgcnn-occo model on ShapeNet, from scratch
python train_completion.py \
	--gpu 0,1 \
	--batch_size 16 \
	--dataset shapenet \
	--model dgcnn_occo \
	--log_dir shapenet_dgcnn_vanilla ;
Pre-Trained Weights

We will provide the OcCo pre-trained models for all the three models here, you can use them for visualization of completing self-occluded point cloud, fine tuning on classification, scene semantic and object part segmentation tasks.

3) Sanity Check on Pre-Training

We use single channel values as well as the t-SNE for dimensionality reduction to visualize the learned object embeddings on objects from the ShapeNet10, while the encoders are pre-trained on the ModelNet40 dataset, see utils/TSNE_Visu.py for details.

We also train a Support Vector Machine (SVM) based on the learned embeddings object recognition. It is in train_svm.py. We also provide the bash template for this, see bash_template/train_svm_template.sh for details:

#!/usr/bin/env bash

cd ../

# fit a simple linear SVM on ModelNet40 with OcCo PCN
python train_svm.py \
	--gpu 0 \
	--model pcn_util \
	--dataset modelnet40 \
	--restore_path log/completion/modelnet_pcn_vanilla/checkpoints/best_model.pth ;

# grid search the best svm parameters with rbf kernel on ScanObjectNN(OBJ_BG) with OcCo DGCNN
python train_svm.py \
	--gpu 0 \
	--grid_search \
	--batch_size 8 \
	--model dgcnn_util \
	--dataset scanobjectnn \
	--bn \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;

4) Fine Tuning Task - Classification

Data Usage:

For the details in the data setup, please see data/readme.md.

Training/Testing Scripts:

We unify the training and testing of all three models (PointNet, PCN and DGCNN) in train_cls.py. We also provide the bash template for training each models from scratch, JigSaw/OcCo pre-trained checkpoints, see bash_template/train_cls_template.sh for details:

#!/usr/bin/env bash

cd ../

# training pointnet on ModelNet40, from scratch
python train_cls.py \
	--gpu 0 \
	--model pointnet_cls \
	--dataset modelnet40 \
	--log_dir modelnet40_pointnet_scratch ;

# fine tuning pcn on ScanNet10, using jigsaw pre-trained checkpoints
python train_cls.py \
	--gpu 0 \
	--model pcn_cls \
	--dataset scannet10 \
	--log_dir scannet10_pcn_jigsaw \
	--restore \
	--restore_path log/completion/modelnet_pcn_vanilla/checkpoints/best_model.pth ;

# fine tuning dgcnn on ScanObjectNN(OBJ_BG), using jigsaw pre-trained checkpoints
python train_cls.py \
	--gpu 0,1 \
	--epoch 250 \
	--use_sgd \
	--scheduler cos \
	--model dgcnn_cls \
	--dataset scanobjectnn \
	--bn \
	--log_dir scanobjectnn_dgcnn_occo \
	--restore \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;

# test pointnet on ModelNet40 from pre-trained checkpoints
python train_cls.py \
	--gpu 1 \
	--mode test \
	--model pointnet_cls \
	--dataset modelnet40 \
	--log_dir modelnet40_pointnet_scratch \
	--restore \
	--restore_path log/cls/modelnet40_pointnet_scratch/checkpoints/best_model.pth ;

5) Fine Tuning Task - Semantic Segmentation

Data Usage:

For the details in the data setup, please see data/readme.md.

Training/Testing Scripts:

We unify the training and testing of all three models (PointNet, PCN and DGCNN) in train_semseg.py. We also provide the bash template for training each models from scratch, JigSaw/OcCo pre-trained checkpoints, see bash_template/train_semseg_template.sh for details:

#!/usr/bin/env bash

cd ../

# train pointnet_semseg on 6-fold cv of S3DIS, from scratch
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--model pointnet_semseg \
	--bn_decay \
	--xavier_init \
	--test_area ${area} \
	--scheduler step \
	--log_dir pointnet_area${area}_scratch ;
done

# fine tune pcn_semseg on 6-fold cv of S3DIS, using jigsaw pre-trained weights
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--model pcn_semseg \
	--bn_decay \
	--test_area ${area} \
	--log_dir pcn_area${area}_jigsaw \
	--restore \
	--restore_path log/jigsaw/modelnet_pcn_vanilla/checkpoints/best_model.pth ;
done

# fine tune dgcnn_semseg on 6-fold cv of S3DIS, using occo pre-trained weights
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--test_area ${area} \
	--optimizer sgd \
	--scheduler cos \
	--model dgcnn_semseg \
	--log_dir dgcnn_area${area}_occo \
	--restore \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;
done

# test pointnet_semseg on 6-fold cv of S3DIS, from saved checkpoints
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--mode test \
	--model pointnet_semseg \
	--test_area ${area} \
	--scheduler step \
	--log_dir pointnet_area${area}_scratch \
	--restore \
	--restore_path log/semseg/pointnet_area${area}_scratch/checkpoints/best_model.pth ;
done
Visualization:

We recommended using relevant code snippets in RandLA-Net for visualization.

6) Fine Tuning Task - Part Segmentation

Data Usage:

For the details in the data setup, please see data/readme.md.

Training/Testing Scripts:

We unify the training and testing of all three models (PointNet, PCN and DGCNN) in train_partseg.py. We also provide the bash template for training each models from scratch, JigSaw/OcCo pre-trained checkpoints, see bash_template/train_partseg_template.sh for details:

#!/usr/bin/env bash

cd ../

# training pointnet on ShapeNetPart, from scratch
python train_partseg.py \
	--gpu 0 \
	--normal \
	--bn_decay \
	--xavier_init \
	--model pointnet_partseg \
    --log_dir pointnet_scratch ;


# fine tuning pcn on ShapeNetPart, using jigsaw pre-trained checkpoints
python train_partseg.py \
	--gpu 0 \
	--normal \
	--bn_decay \
	--xavier_init \
	--model pcn_partseg \
	--log_dir pcn_jigsaw \
	--restore \
	--restore_path log/jigsaw/modelnet_pcn_vanilla/checkpoints/best_model.pth ;


# fine tuning dgcnn on ShapeNetPart, using occo pre-trained checkpoints
python train_partseg.py \
	--gpu 0,1 \
	--normal \
	--use_sgd \
	--xavier_init \
	--scheduler cos \
	--model dgcnn_partseg \
	--log_dir dgcnn_occo \
	--restore \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;


# test fine tuned pointnet on ShapeNetPart, using multiple votes
python train_partseg.py \
	--gpu 1 \
	--epoch 1 \
	--mode test \
	--num_votes 3 \
	--model pointnet_partseg \
	--log_dir pointnet_scratch \
	--restore \
	--restore_path log/partseg/pointnet_occo/checkpoints/best_model.pth ;

6) OcCo Data Generation (Create Your Own Dataset for OcCo Pre-Training)

For the details in the self-occluded point cloud generation, please see render/readme.md.

7) Just Completion (Complete Your Own Data with Pre-Trained Model)

You can use it for completing your occluded point cloud data with our provided OcCo checkpoints.

8) Jigsaw Puzzle

We also provide our implementation (developed from scratch) on pre-training point cloud models via solving 3d jigsaw puzzles tasks as well as data generation, the method is described in this paper, while the authors did not reprocess to our code request. The details of our implementation is reported in our paper appendix.

For the details of our implementation, please refer to description in the appendix of our paper and relevant code snippets, i.e., train_jigsaw.py, utils/3DPC_Data_Gen.py and train_jigsaw_template.sh.

Results

Generated Dataset:

image

Completed Occluded Point Cloud:

-- PointNet:

image

-- PCN:

image

-- DGCNN:

image

-- Failure Examples:

image

Visualization of learned features:

image

Classification (linear SVM):

image

Classification:

image

##### Semantic Segmentation:

image

##### Part Segmentation:

image

Sample Efficiency:

image

Learning Efficiency:

image

For the description and discussion of the results, please refer to our paper, thanks :)

Contributing

The code of this project is released under the MIT License.

We would like to thank and acknowledge referenced codes from the following repositories:

https://github.com/wentaoyuan/pcn

https://github.com/hansen7/NRS_3D

https://github.com/WangYueFt/dgcnn

https://github.com/charlesq34/pointnet

https://github.com/charlesq34/pointnet2

https://github.com/PointCloudLibrary/pcl

https://github.com/AnTao97/dgcnn.pytorch

https://github.com/HuguesTHOMAS/KPConv

https://github.com/QingyongHu/RandLA-Net

https://github.com/chrdiller/pyTorchChamferDistance

https://github.com/yanx27/Pointnet_Pointnet2_pytorch

https://github.com/AnTao97/UnsupervisedPointCloudReconstruction

We appreciate the help from the supportive technicians, Peter and Raf, from Cambridge Engineering :)

A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022