[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

Overview

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

This is the official implementation of our ICCV 2021 paper

News

There maybe some bugs in the current public code and I am trying my best to solve them.

Contact me if you have any question.

TODO

  • Supplement 2D/3D visualization code.

Getting Started

Clone the repository:

git clone https://github.com/IceTTTb/PlaneTR3D.git

We use Python 3.6 and PyTorch 1.6.0 in our implementation, please install dependencies:

conda create -n planeTR python=3.6
conda activate planeTR
conda install pytorch=1.6.0 torchvision=0.7.0 torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Data Preparation

We train and test our network on the plane dataset created by PlaneNet. We follow PlaneAE to convert the .tfrecords to .npz files. Please refer to PlaneAE for more details.

We generate line segments using the state-of-the-art line segment detection algorithm HAWP with their pretrained model. The processed line segments data we used can be downloaded here.

The structure of the data folder should be

plane_data/
  --train/*.npz
  --train_img/*
  --val/*.npz
  --val_img/*
  --train.txt
  --val.txt

Training

Download the pretrained model of HRNet and place it under the 'ckpts/' folder.

Change the 'root_dir' in config files to the path where you save the data.

Run the following command to train our network on one GPU:

CUDA_VISIBLE_DEVICES=0 python train_planeTR.py

Run the following command to train our network on multiple GPUs:

CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node=3 --master_port 295025 train_planeTR.py

Evaluation

Download the pretrained model here and place it under the 'ckpts/' folder.

Change the 'resume_dir' in 'config_planeTR_eval.yaml' to the path where you save the weight file.

Change the 'root_dir' in config files to the path where you save the data.

Run the following command to evaluate the performance:

CUDA_VISIBLE_DEVICES=0 python eval_planeTR.py

Citations

If you find our work useful in your research, please consider citing:

@inproceedings{tan2021planeTR,
title={PlaneTR: Structure-Guided Transformers for 3D Plane Recovery},
author={Tan, Bin and Xue, Nan and Bai, Song and Wu, Tianfu and Xia, Gui-Song},
booktitle = {International Conference on Computer Vision},
year={2021}
}

Contact

[email protected]

https://xuenan.net/

Acknowledgements

We thank the authors of PlaneAE, PlaneRCNN, interplane and DETR. Our implementation is heavily built upon their codes.

DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Atif Hassan 103 Dec 14, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022