Deep Learning for Computer Vision final project

Overview

Deep Learning for Computer Vision final project

Team: DLCV1

Member & Contribution:

  • 林彥廷 (R06943184): 主程式撰寫、模型訓練 (50%)
  • 王擎天 (R06945055): 副程式撰寫、模型訓練、海報設計 (50%)

Overview:

This project contains code to predict image's type from different domain using moment matching.

Description:

Folders:

  • script: folder contains scripts
  • src: folder contains source code
  • model: folder contains saved models which automatically download from network

Files:

  • script/get_dataset.sh: script which downloads training and testing dataset
  • script/download_from_gdrive.sh: script which downloads googledrive data
  • script/parse_data.sh: script which loads training dataset and converts to torch dataset
  • script/predict.sh: script which predicts images
  • script/evaluate.sh: script which evaluates the model
  • script/predict_for_verify.sh script which generates mini-batch average validation accuracy and loss plot
  • src/models/classifier.py: classifier model
  • src/models/loss.py: loss function
  • src/models/pretrained.py: pretrained model
  • src/models/model.py: Model and function for prediction and evaluation
  • src/parse_data.py: load data in folder and convert them to torch dataset
  • src/predict.py: prediction main function
  • src/evaluate.py: evaluation main function
  • src/train.py: training function
  • src/utils.py: code for parsing and saving
  • src/util/dataset.py: customized dataloader
  • src/util/visual.py: code for visualization
  • src/create_path_csv.py:main function to create image path csv file for image folder

Dataset:

Download training and testing dataset to folder named "dataset_public":

bash ./script/get_dataset.sh

WARNING:

You MUST use src/create_path_csv.py to create image-path csv file for image folder which hasn't contain image-path csv file, the usage will teach you how to use it!!!

Usage:

Create image-path csv file for image folder:

User can use this script to create image-path csv file

python3 src/create_path_csv.py $1
  • $1 is the folder containing the images

Example: (path: /home/final-dlcv1)

python3 src/create_path_csv.py dataset_public/test

The result will look like following text: image_name,label test/018764.jpg,-1 test/034458.jpg,-1 test/050001.jpg,-1 test/027193.jpg,-1 test/002637.jpg,-1 test/017265.jpg,-1 test/048396.jpg,-1 test/013178.jpg,-1 test/036777.jpg,-1 ......

Predict labels of images:

User can use this script to predict labels of images

bash ./script/predict.sh $1 $2 $3 $4 $5
  • $1 is the domain of images (Option: infograph, quickdraw, real, sketch)
  • $2 is the folder containing the images
  • $3 is the csv file contains image paths
  • $4 is the folder to saved the result file
  • $5 is the batch size

Example 1: Predict images from real domain (path: /home/final-dlcv1)

bash script/predict.sh real dataset_public dataset_public/test/image_path.csv predict 256

Example 2: Predict images from sketch domain (path: /home/final-dlcv1)

bash script/predict.sh sketch dataset_public dataset_public/sketch/sketch_test.csv predict 256

Example 3: Predict images from infograph domain (path: /home/final-dlcv1)

bash script/predict.sh infograph dataset_public dataset_public/infograph/infograph_test.csv predict 256

Example 4: Predict images from quickdraw domain (path: /home/final-dlcv1)

bash script/predict.sh quickdraw dataset_public dataset_public/quickdraw/quickdraw_test.csv predict 256

Evaluate the result file:

User can use this script to evaluate the reuslt file with answer file, it will print result on the screen

bash ./script/evaluate.sh $1 $2
  • $1 is the predicted file csv
  • $2 is the answer file csv

Example (path:/home/final-dlcv1)

bash ./script/evaluate.sh predict/real_predict.csv test/test_answer.csv

Reference

Owner
grassking100
A researcher study in bioinformatics and deep learning. To see other repositories: https://bitbucket.org/grassking100/?sort=-updated_on&privacy=public.
grassking100
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022