Serving PyTorch 1.0 Models as a Web Server in C++

Overview

Serving PyTorch Models in C++

  • This repository contains various examples to perform inference using PyTorch C++ API.
  • Run git clone https://github.com/Wizaron/pytorch-cpp-inference in order to clone this repository.

Environment

  1. Dockerfiles can be found at docker directory. There are two dockerfiles; one for cpu and the other for cuda10. In order to build docker image, you should go to docker/cpu or docker/cuda10 directory and run docker build -t <docker-image-name> ..
  2. After creation of the docker image, you should create a docker container via docker run -v <directory-that-this-repository-resides>:<target-directory-in-docker-container> -p 8181:8181 -it <docker-image-name> (We will use 8181 to serve our PyTorch C++ model).
  3. Inside docker container, go to the directory that this repository resides.
  4. Download libtorch from PyTorch Website (CPU : https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-1.3.1%2Bcpu.zip - CUDA10 : https://download.pytorch.org/libtorch/cu101/libtorch-cxx11-abi-shared-with-deps-1.3.1.zip).
  5. Unzip libtorch via unzip. This will create libtorch directory that contains torch shared libraries and headers.

Code Structure

  • models directory stores PyTorch models.
  • libtorch directory stores C++ torch headers and shared libraries to link the model against PyTorch.
  • utils directory stores various utility function to perform inference in C++.
  • inference-cpp directory stores codes to perform inference.

Exporting PyTorch ScriptModule

  • In order to export torch.jit.ScriptModule of ResNet18 to perform C++ inference, go to models/resnet directory and run python3 resnet.py. It will download pretrained ResNet18 model on ImageNet and create models/resnet_model_cpu.pth and (optionally) models/resnet_model_gpu.pth which we will use in C++ inference.

Serving the C++ Model

  • We can either serve the model as a single executable or as a web server.

Single Executable

  • In order to build a single executable for inference:
    1. Go to inference-cpp/cnn-classification directory.
    2. Run ./build.sh in order to build executable, named as predict.
    3. Run the executable via ./predict <path-to-image> <path-to-exported-script-module> <path-to-labels-file> <gpu-flag{true/false}>.
    4. Example: ./predict image.jpeg ../../models/resnet/resnet_model_cpu.pth ../../models/resnet/labels.txt false

Web Server

  • In order to build a web server for production:
    1. Go to inference-cpp/cnn-classification/server directory.
    2. Run ./build.sh in order to build web server, named as predict.
    3. Run the binary via ./predict <path-to-exported-script-module> <path-to-labels-file> <gpu-flag{true/false}> (It will serve the model on http://localhost:8181/predict).
    4. Example: ./predict ../../../models/resnet/resnet_model_cpu.pth ../../../models/resnet/labels.txt false
    5. In order to make a request, open a new tab and run python test_api.py (It will make a request to localhost:8181/predict).

Acknowledgement

  1. pytorch
  2. crow
  3. tensorflow_cpp_object_detection_web_server
Owner
Onur Kaplan
Onur Kaplan
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022