DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Overview

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures

PWC

Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polarity_csv.tgz
https://www.kaggle.com/rtatman/deceptive-opinion-spam-corpus
The data includes 1,569,264 samples from the Yelp Dataset Challenge 2015. This subset has 280,000 training samples and 19,000 test samples in each polarity.
**Also, if you happen to refer my work, a citation would do wonders for me. Thanks! **
The following implementations are done:

  1. Bidirectional LSTM with GLoVE 50D word embeddings
  2. LSTM with GLoVE 100D word embeddings
  3. LSTM with GLoVE 300D word embeddings
  4. CNN-LSTM with Doc2Vec and TF-IDF
  5. Attention mechanism with GLoVe 100D word embeddings
  6. Logistic Regression
  7. Multinomial Naive Bayes
  8. Support Vector Machine - Stochastic Gradient Descent (SGD)

The results obtained were as follows:

Sr. No. Model Accuracy (%) Precision Score Recall Score F1 Score
1 MultinomialNB 90.25 0.9325 0.8601
2 Stochastic Gradient Descent (SGD) 87.75 0.8913 0.8497
3 Logistic Regression 87.00 0.8691 0.8601
4 Support Vector Machine 56.25 0.525 0.9792
5 Gaussian Naive Bayes 63.5 0.6424 0.6169
6 K-Nearest Neighbour 57.5 0.8604 0.1840
7 Decision tree 68.5 0.6681 0.7412
Model Training accuracy(%) Testing accuracy(%)
Bidirectional LSTM + GLoVe(50D) 92.17 88.13
LSTM + GLoVe(100D) 99.18 85.75
CNN + LSTM + Doc2Vec +TF-IDF 96.23 92.19
CNN + Attention + GLoVe(100D) 99.00 90.25
BiLSTM + Attention + GLoVe(100D) 99.18 89.27
CNN + BiLSTM + Attention + GLoVe(100D) 99.75 81.25
LogisticRegression + TF-IDF 99.11 87.21

Future scope includes improvement in the attention layer to increase testing accuracy. BERT and XLNet can be implemented to improve the performance further.

Owner
Ashish Salunkhe
Full Stack Developer. Interests in NLP, Knowledge Graphs and Product Dev
Ashish Salunkhe
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022