(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Overview

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation)

Filtering by Cluster Consistency (FCC) is a very useful algorithm for filtering out wrong keypoint matches using cycle-consistency constraints. It is fast, accurate and memory efficient. It is purely based on sparse matrix operations and is completely decentralized. As a result, it is scalable to large matching matrix (millions by millions, as those in large scale SfM datasets e.g. Photo Tourism). It uses a special reweighting scheme, which can be viewed as a message passing procedure, to refine the classification of good/bad keypoint matches. The filtering result is often better than Spectral and SDP based methods and can be several order of magnitude faster.

To use our code, please cite the following paper: Yunpeng Shi, Shaohan Li, Tyler Maunu, Gilad Lerman. Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching, International Conference on 3D Vision (3DV), 2021

Usage

Checkout the demo code Demo_FCC.m. A sample output is as follows:

>> Demo_FCC
generate initial camera adjacency matrix
create camera intrinsic matrices. f (focal length) is set to 5000 pixel sizes
generate 3d point cloud (a sphere)
generate camera locations from 3d gaussian dist with radius constraints
generating 2d keypoints from camera projection matrices
generating and corrupting keypoint matches
start running FCC
iteration 1 Completed!
iteration 2 Completed!
iteration 3 Completed!
iteration 4 Completed!
iteration 5 Completed!
iteration 6 Completed!
iteration 7 Completed!
iteration 8 Completed!
iteration 9 Completed!
iteration 10 Completed!
Elapsed time is 0.782890 seconds.
classification error (Jaccard distance) = 0.031733
precision rate = 0.973654
recall rate = 0.994319

It often gives almost perfect separation between good and bad matches even when a large fraction of clean keypoint matches are removed or corrupted. The classification result is often better (and much faster) than spectral-based methods. The following is an example of histograms of our FCC statistics for clean and wrong keypoint matches. Our statistic measures the confidence that a match is clean (good).

Flexible Input and Informative Output

The function FCC.m takes matching matrix (Adjacency matrix of the keypoint matching graph, where the indices of keypoints (nodes) are grouped by images) as input. In principle, the input can also be a SIFT feature (or other features) similarity matrix (so not necessarily binary). This function outputs the statistics matrix that tells you for each keypoint match its probability of being a good match. Thus, it contains the confidence information, not just classification results. One can set different threshold levels (tradeoff between precision and recall) for the statistics matrix to obtain the filtered matches, depending on the tasks.

A novel Synthetic Model

We provide a new synthetic model that realistically mirror the real scenario, and allows control of different parameters. Please check FCC_synthetic_data.m. It generates a set of synthetic cameras, images, 3d points and 2d keypoints. It allows user to control the sparsity in camera correspondences and keypoint matches, and the corruption level and corruption mode (elementwise or inlier-outlier model) for keypoint matches.

Owner
Yunpeng Shi
Postdoctoral Research Associate at Princeton University
Yunpeng Shi
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
Akshat Surolia 2 May 11, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022