Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Overview

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper]

Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Fish Tung, R.T. Pramod, Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kanwisher, Joshua B. Tenenbaum, Daniel L.K. Yamins, Judith E. Fan

This is the official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset. The code is built based on the original implementation of DPI-Net (https://github.com/YunzhuLi/DPI-Net).

Contact: [email protected] (Fish Tung)

Papers of GNS and DPI-Net:

** Learning to Simulate Complex Physics with Graph Networks ** [paper]

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia

** Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids ** [website] [paper]

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, Antonio Torralba **

Demo

Rollout from our learned model (left is ground truth, right is prediction)

Dominoes Roll Contain Drape

Installation

Clone this repo:

git clone https://github.com/htung0101/DPI-Net-p.git
cd DPI-Net-p
git submodule update --init --recursive

Install Dependencies if using Conda

For Conda users, we provide an installation script:

bash ./scripts/conda_deps.sh
pip install pyyaml

To use tensorboard for training visualization

pip install tensorboardX
pip install tensorboard

Install binvox

We use binvox to transform object mesh into particles. To use binvox, please download binvox from https://www.patrickmin.com/binvox/, put it under ./bin, and include it in your path with

export PATH=$PATH:$PWD/bin.

You might need to do chmod 777 binvox in order to execute the file.

Setup your own data path

open paths.yaml and write your own path there. You can set up different paths for different machines under different user name.

Preprocessing the Physion dataset

1) We need to convert the mesh scenes into particle scenes. This line will generate a separate folder (dpi_data_dir specified in paths.yaml) that holds data for the particle-based models

bash run_preprocessing_tdw_cheap.sh [SCENARIO_NAME] [MODE]

e.g., bash run_preprocessing_tdw_cheap.sh Dominoes train SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop, or Drape. MODE can be either train or test

You can visualize the original videos and the generated particle scenes with

python preprocessing_tdw_cheap.py --scenario Dominones --mode "train" --visualization 1

There will be videos generated under the folder vispy.

2) Then, try generate a train.txt and valid.txt files that indicates the trials you want to use for training and validaiton.

python create_train_valid.py

You can also design your specific split. Just put the trial names into one txt file.

3) For evalution on the red-hits-yellow prediciton, we can get the binary red-hits-yellow label txt file from the test dataset with

bash run_get_label_txt.sh [SCENARIO_NAME] test

This will generate a folder called labels under your output_folder dpi_data_dir. In the folder, each scenario will have a corresponding label file called [SCENARIO_NAME].txt

Training

Ok, now we are ready to start training the models.You can use the following command to train from scratch.

  • Train GNS
    bash scripts/train_gns.sh [SCENARIO_NAME] [GPU_ID]

SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop and Drape.

  • Train DPI
    bash scripts/train_dpi.sh [SCENARIO_NAME] [GPU_ID]

Our implementation is different from the original DPI paper in 2 ways: (1) our model takes as inputs relative positions as opposed to absolute positions, (2) our model is trained with injected noise. These two features are suggested in the GNS paper, and we found them to be critcial for the models to generalize well to unseen scenes.

  • Train with multiple scenarios

You can also train with more than one scenarios by adding different scenario to the argument dataf

 python train.py  --env TDWdominoes --model_name GNS --log_per_iter 1000 --training_fpt 3 --ckp_per_iter 5000 --floor_cheat 1  --dataf "Dominoes, Collide, Support, Link, Roll, Drop, Contain, Drape" --outf "all_gns"
  • Visualize your training progress

Models and model logs are saved under [out_dir]/dump/dump_TDWdominoes. You can visualize the training progress using tensorboard

tensorboard --logdir MODEL_NAME/log

Evaluation

  • Evaluate GNS
bash scripts/eval_gns.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can get the prediction txt file under eval/eval_TDWdominoes/[MODEL_NAME], e.g., test-Drape.txt, which contains results of testing the model on the Drape scenario. You can visualize the results with additional argument --vis 1.

  • Evaluate GNS-Ransac
bash scripts/eval_gns_ransac.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate DPI
bash scripts/eval_dpi.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate Models trained on multiple scenario Here we provide some example of evaluating on arbitray models trained on all scenarios.
bash eval_all_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_dpi.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_gns_ransac.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Visualize trained Models Here we provide an example of visualizing the rollout results from trained arbitray models.
bash vis_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can find the visualization under eval/eval_TDWdominoes/[MODEL_NAME]/test-[Scenario]. We should see a gif for the original RGB videos, and another gif for the side-by-side comparison of gt particle scenes and the predicted particle scenes.

Citing Physion

If you find this codebase useful in your research, please consider citing:

@inproceedings{bear2021physion,
    Title={Physion: Evaluating Physical Prediction from Vision in Humans and Machines},
    author= {Daniel M. Bear and
           Elias Wang and
           Damian Mrowca and
           Felix J. Binder and
           Hsiao{-}Yu Fish Tung and
           R. T. Pramod and
           Cameron Holdaway and
           Sirui Tao and
           Kevin A. Smith and
           Fan{-}Yun Sun and
           Li Fei{-}Fei and
           Nancy Kanwisher and
           Joshua B. Tenenbaum and
           Daniel L. K. Yamins and
           Judith E. Fan},
    url = {https://arxiv.org/abs/2106.08261},
    archivePrefix = {arXiv},
    eprint = {2106.08261},
    Year = {2021}
}
Owner
Hsiao-Yu Fish Tung
Postdoc at MIT CoCosci Lab and Stanford NeuroAILab. PhD at CMU MLD
Hsiao-Yu Fish Tung
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022