PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Overview

Temporal Output Discrepancy for Active Learning

PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Introduction

  • We present a loss measurement Temporal Output Discrepancy (TOD) that estimates the loss of unlabeled samples by evaluating the distance of model outputs at different SGD steps.
  • We theoretically demonstrate that TOD is a lower-bound of accumulated sample loss.
  • An unlabeled data sampling strategy and a semi-supervised training scheme are developed for active learning based on TOD.

TOD Active Data Selection

Results

Requirements

numpy

torch >= 1.0.1

torchvision >= 0.2.1

Data Preparation

Download image classification datasets (e.g., Cifar-10, Cifar-100, SVHN, or Caltech101) and put them under ./data.

If you would like to try Caltech101 dataset, please download the pretrained ResNet-18 model and put it under ./.

Directory structure should be like:

TOD
|-- data
    |-- 101_ObjectCategories
        |-- accordion
        |-- airplanes
        |-- anchor
        |-- ...
    |-- cifar-10-batches-py
    |-- cifar-100-python
    |-- svhn
        |-- train_32x32.mat
        |-- test_32x32.mat
|-- resnet18-5c106cde.pth
|-- ...

Quick Start

Run TOD active learning experiment on Cifar-10:

bash run.sh

Specify Datasets, Active Sampling Strategies, and Auxiliary Losses

The dataset configurations, active learning settings (trials and cycles), and neural network training settings can be found in ./config folder.

We provide implementations of active data sampling strategies including random sampling, learning loss for active learning (LL4AL), and our TOD sampling. Use --sampling to specify a sampling strategy.

We also provide implementations of auxiliary training losses including LL4AL and our COD loss. Use --auxiliary to specify an auxiliary loss.

Examples

Cifar-100 dataset, TOD sampling, no unsupervised loss:

python main_TOD.py --config cifar100 --sampling TOD --auxiliary NONE

Caltech101 dataset, random sampling, COD loss:

python main_TOD.py --config caltech101 --sampling RANDOM --auxiliary TOD

SVHN dataset, LL4AL sampling, LL4AL loss:

python main_LL4AL.py --config svhn --sampling LL4AL --auxiliary LL4AL

Citation

 @inproceedings{huang2021semi,
  title={Semi-Supervised Active Learning with Temporal Output Discrepancy},
  author={Huang, Siyu and Wang, Tainyang and Xiong, Haoyi and Huan, Jun and Dou, Dejing},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
 }

Contact

Siyu Huang

[email protected]

Owner
Siyu Huang
Research Fellow
Siyu Huang
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022