Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

Related tags

Deep LearningDAFormer
Overview

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

[Arxiv] [Paper]

As acquiring pixel-wise annotations of real-world images for semantic segmentation is a costly process, a model can instead be trained with more accessible synthetic data and adapted to real images without requiring their annotations. This process is studied in Unsupervised Domain Adaptation (UDA).

Even though a large number of methods propose new UDA strategies, they are mostly based on outdated network architectures. In this work, we particularly study the influence of the network architecture on UDA performance and propose DAFormer, a network architecture tailored for UDA. It consists of a Transformer encoder and a multi-level context-aware feature fusion decoder.

DAFormer is enabled by three simple but crucial training strategies to stabilize the training and to avoid overfitting the source domain: While the Rare Class Sampling on the source domain improves the quality of pseudo-labels by mitigating the confirmation bias of self-training towards common classes, the Thing-Class ImageNet Feature Distance and a Learning Rate Warmup promote feature transfer from ImageNet pretraining.

DAFormer significantly improves the state-of-the-art performance by 10.8 mIoU for GTA→Cityscapes and by 5.4 mIoU for Synthia→Cityscapes and enables learning even difficult classes such as train, bus, and truck well.

UDA over time

The strengths of DAFormer, compared to the previous state-of-the-art UDA method ProDA, can also be observed in qualitative examples from the Cityscapes validation set.

Demo Color Palette

For more information on DAFormer, please check our [Paper].

If you find this project useful in your research, please consider citing:

@article{hoyer2021daformer,
  title={DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation},
  author={Hoyer, Lukas and Dai, Dengxin and Van Gool, Luc},
  journal={arXiv preprint arXiv:2111.14887},
  year={2021}
}

Setup Environment

For this project, we used python 3.8.5. We recommend setting up a new virtual environment:

python -m venv ~/venv/daformer
source ~/venv/daformer/bin/activate

In that environment, the requirements can be installed with:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.3.7  # requires the other packages to be installed first

Further, please download the MiT weights and a pretrained DAFormer using the following script. If problems occur with the automatic download, please follow the instructions for a manual download within the script.

sh tools/download_checkpoints.sh

All experiments were executed on a NVIDIA RTX 2080 Ti.

Inference Demo

Already as this point, the provided DAFormer model (downloaded by tools/download_checkpoints.sh) can be applied to a demo image:

python -m demo.image_demo demo/demo.png work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/211108_1622_gta2cs_daformer_s0_7f24c.json work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/latest.pth

When judging the predictions, please keep in mind that DAFormer had no access to real-world labels during the training.

Setup Datasets

Cityscapes: Please, download leftImg8bit_trainvaltest.zip and gt_trainvaltest.zip from here and extract them to data/cityscapes.

GTA: Please, download all image and label packages from here and extract them to data/gta.

Synthia: Please, download SYNTHIA-RAND-CITYSCAPES from here and extract it to data/synthia.

The final folder structure should look like this:

DAFormer
├── ...
├── data
│   ├── cityscapes
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── gta
│   │   ├── images
│   │   ├── labels
│   ├── synthia
│   │   ├── RGB
│   │   ├── GT
│   │   │   ├── LABELS
├── ...

Data Preprocessing: Finally, please run the following scripts to convert the label IDs to the train IDs and to generate the class index for RCS:

python tools/convert_datasets/gta.py data/gta --nproc 8
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8
python tools/convert_datasets/synthia.py data/synthia/ --nproc 8

Training

For convenience, we provide an annotated config file of the final DAFormer. A training job can be launched using:

python run_experiments.py --config configs/daformer/gta2cs_uda_warm_fdthings_rcs_croppl_a999_daformer_mitb5_s0.py

For the experiments in our paper (e.g. network architecture comparison, component ablations, ...), we use a system to automatically generate and train the configs:

python run_experimenty.py --exp <ID>

More information about the available experiments and their assigned IDs, can be found in experiments.py. The generated configs will be stored in configs/generated/.

Testing & Predictions

The provided DAFormer checkpoint trained on GTA->Cityscapes (already downloaded by tools/download_checkpoints.sh) can be tested on the Cityscapes validation set using:

sh test.sh work_dirs/211108_1622_gta2cs_daformer_s0_7f24c

The predictions are saved for inspection to work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/preds and the mIoU of the model is printed to the console. The provided checkpoint should achieve 68.85 mIoU. Refer to the end of work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/20211108_164105.log for more information such as the class-wise IoU.

Similarly, also other models can be tested after the training has finished:

sh test.sh path/to/checkpoint_directory

Framework Structure

This project is based on mmsegmentation version 0.16.0. For more information about the framework structure and the config system, please refer to the mmsegmentation documentation and the mmcv documentation.

The most relevant files for DAFormer are:

Acknowledgements

This project is based on the following open-source projects. We thank their authors for making the source code publically available.

Owner
Lukas Hoyer
Doctoral student at ETH Zurich
Lukas Hoyer
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022