A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

Overview

What

Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun 23, 2019)

Why

  • OpenCV's DNN module, as of today, does not support NVIDIA GPUs. There is a GSOC WIP that will change this. Till then, this library is what I needed.

  • I used Alexy's fork because he keeps it more updated with required changes (like using std++-11 etc.).
    W

  • Other excellent libraries such as pyyolo, Yolo34Py did not work for me with CUDA 10.1 and OpenCV 4.1. They all had compiler issues

How to use this library

By dead simple, I mean dead simple.

  • This module doesn't bother cloning/building darknet. Build it whichever way you want, and simply make libdarknet.so accessible to this module.

  • Modify cfg/coco.data names= to point to where you have the labels (typically coco.names)

  • See example.py

Sample:

import simpleyolo.simpleYolo as yolo

configPath='./cfg/yolov3.cfg'
weightPath='./yolov3.weights'
metaPath='./cfg/coco.data'
imagePath='data/dog.jpg'

# initialize
m = yolo.SimpleYolo(configPath=configPath, 
                    weightPath=weightPath, 
                    metaPath=metaPath, 
                    darknetLib='./libdarknet_gpu.so', 
                    useGPU=True)
print ('detecting...')
detections = m.detect(imagePath)
print (detections)

When to use/not to use

  • Use this library if you want GPU support for YoloV3.
  • DON'T USE THIS LIBRARY if you want CPU support. It will work, but OpenCV's DNN module for YoloV3 is around 10x faster than using darknet directly. Really.
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, OpenCV DNN YoloV3 with blas/atlas takes ~2-4s
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, darkneti YoloV3 takes ~45s (gaah!)
  • BUT, on GPU, NVIDIA GeForce 1050 Ti, 4GB, same CPU, darknet YoloV3 takes 91ms (woot!)

If you really want to know how to get darknet working with OpenCV 4.1

Assuming you have built/installed CUDA/cuDNN and optionally OpenCV 4.1:

git clone https://github.com/AlexeyAB/darknet
cd darknet

Edit the Makefile, set:
GPU=1
CUDNN=1
LIBSO=1

If you want darknet to use OPENCV (not necessary), also set

OPENCV=1 

Notes:

  • You will make to change the Makefile to change pkg-config --libs opencv to pkg-config --libs opencv4 (2 instances). This will not be needed after Alexy fixes this issue

  • The above will only work if you previously compiled OpenCV 4+ with OPENCV_GENERATE_PKGCONFIG=ON and then copied the generated pc file like so: sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty, please, how do we build OpenCV 4.1 with CUDA 10.1?

Assuming you have built/installed CUDA/cuDNN:

git clone https://github.com/opencv/opencv
git clone https://github.com/opencv/opencv_contrib
cd opencv
mkdir build

cmake -D CMAKE_BUILD_TYPE=RELEASE \
        -D CMAKE_INSTALL_PREFIX=/usr/local \
        -D PYTHON_DEFAULT_EXECUTABLE=$(which python3) \
        -D INSTALL_PYTHON_EXAMPLES=OFF \
        -D INSTALL_C_EXAMPLES=OFF \
        -D OPENCV_ENABLE_NONFREE=ON \
        -D OPENCV_EXTRA_MODULES_PATH=/home/pp/opencv_contrib/modules \
        -D BUILD_EXAMPLES=OFF \
        -D WITH_CUDA=ON \
        -D ENABLE_FAST_MATH=ON \
        -D CUDA_FAST_MATH=ON \
        -D WITH_CUBLAS=ON \
        -D WITH_OPENCL=ON \
        -D BUILD_opencv_cudacodec=OFF \
        -D BUILD_opencv_world=OFF \
        -D WITH_NVCUVID=OFF \
        -D WITH_OPENGL=ON \
        -D BUILD_opencv_python3=ON \
        -D OPENCV_GENERATE_PKGCONFIG=ON \
        ..
make -j$(nproc)
sudo make install

# don't forget this, for darknet and other libs to find opencv4 later
sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty pretty please, how do I build CUDA 10.1 and nvidia drivers?

Maybe later.

Owner
Pliable Pixels
I code like a Kindergartner
Pliable Pixels
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022