Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

Overview

taganomaly

Anomaly detection labeling tool, specifically for multiple time series (one time series per category).

Taganomaly is a tool for creating labeled data for anomaly detection models. It allows the labeler to select points on a time series, further inspect them by looking at the behavior of other times series at the same time range, or by looking at the raw data that created this time series (assuming that the time series is an aggregated metric, counting events per time range)

Note: This tool was built as a part of a customer engagement, and is not maintained on a regular basis.

Click here to deploy on Azure using Azure Container Instances: Deploy to Azure

Table of contents

Using the app

The app has four main windows:

The labeling window

UI

Time series labeling

Time series

Selected points table view

Selected points

View raw data for window if exists

Detailed data

Compare this category with others over time

Compare

Find proposed anomalies using the Twitter AnomalyDetection package

Reference results

Observe the changes in distribution between categories

This could be useful to understand whether an anomaly was univariate or multivariate Distribution comparison

How to run locally

using R

This tool uses the shiny framework for visualizing events. In order to run it, you need to have R and preferably Rstudio. Once you have everything installed, open the project (taganomaly.Rproj) on R studio and click Run App, or call runApp() from the console. You might need to manually install the required packages

Requirements

  • R (3.4.0 or above)

Used packages:

  • shiny
  • dplyr
  • gridExtra
  • shinydashboard
  • DT
  • ggplot2
  • shinythemes
  • AnomalyDetection

Using Docker

Pull the image from Dockerhub:

docker pull omri374/taganomaly

Run:

docker run --rm -p 3838:3838 omri374/taganomaly

How to deploy using docker

Deploy to Azure

Deploy to Azure Web App for Containers or Azure Container Instances. More details here (webapp) and here (container instances)

Pull the image manually

Deploy this image to your own environment.

Building from source

In order to build a new Docker image, run the following commands from the root folder of the project:

sudo docker build -t taganomaly .

If you added new packages to your modified TagAnomaly version, make sure to specify these in the Dockerfile.

Once the docker image is built, run it by calling

docker run -p 3838:3838 taganomaly

Which would result in the shiny server app running on port 3838.

Instructions of use

  1. Import time series CSV file. Assumed structure:
  • date ("%Y-%m-%d %H:%M:%S")
  • category
  • value
  1. (Optional) Import raw data time series CSV file. If the original time series is an aggreation over time windows, this time series is the raw values themselves. This way we could dive deeper into an anomalous value and see what it is comprised of. Assumed structure:
  • date ("%Y-%m-%d %H:%M:%S")
  • category
  • value
  1. Select category (if exists)

  2. Select time range on slider

  3. Inspect your time series: (1): click on one time range on the table below the plot to see raw data on this time range (2): Open the "All Categories" tab to see how other time series behave on the same time range.

4.Select points on plot that look anomalous.

  1. Click "Add selected points" to add the marked points to the candidate list.

  2. Once you decide that these are actual anomalies, save the resulting table to csv by clicking on "Download labels set" and continue to the next category.

Current limitations

Points added but not saved will be lost in case the date slider or categories are changed, hence it is difficult to save multiple points from a complex time series. Once all segments are labeled, one can run the provided prep_labels.py file in order to concatenate all of TagAnomaly's output file to one CSV.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022