AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

Overview

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

ScreenShot

Description:

This repository contains the code for the paper AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models. This paper will be published at the SEPLN-WS-IberLEF 2021 (the 3rd Workshop on Iberian Languages Evaluation Forum at the SEPLN 2021 Conference) scientific event. Descriptions of the implementation and the dataset are contained in the paper (link: Paper is soon...).

Paper Abstract:

This paper describes our participation in the DEtection of TOXicity in comments In Spanish (DETOXIS) shared task 2021 at the 3rd Workshop on Iberian Languages Evaluation Forum. The shared task is divided into two related classification tasks: (i) Task 1: toxicity detection and; (ii) Task 2: toxicity level detection. They focus on the xenophobic problem exacerbated by the spread of toxic comments posted in different online news articles related to immigration. One of the necessary efforts towards mitigating this problem is to detect toxicity in the comments. Our main objective was to implement an accurate model to detect xenophobia in comments about web news articles within the DETOXIS shared task 2021, based on the competition's official metrics: the F1-score for Task 1 and the Closeness Evaluation Metric (CEM) for Task 2. To solve the tasks, we worked with two types of machine learning models: (i) statistical models and (ii) Deep Bidirectional Transformers for Language Understanding (BERT) models. We obtained our best results in both tasks using BETO, a BERT model trained on a big Spanish corpus. We obtained the 3rd place in Task 1 official ranking with the F1-score of 0.5996, and we achieved the 6th place in Task 2 official ranking with the CEM of 0.7142. Our results suggest: (i) BERT models obtain better results than statistical models for toxicity detection in text comments; (ii) Monolingual BERT models have an advantage over multilingual BERT models in toxicity detection in text comments in their pre-trained language.

Credits

DETOXIS shared Task Organizers

Task website: https://detoxisiberlef.wixsite.com/website/task

Contact: [email protected]

Owner
Angel de Paula
PhD researcher at UPV #DeepLearning #ReinforcementLearrning #ComputerLinguestics #NLP
Angel de Paula
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
đź’› Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022