Code & Data for Enhancing Photorealism Enhancement

Comments
  • Training Error

    Training Error

    First, thank you for the great work, really inspiring!

    To the point: I'm trying to use EPE on my own data (Carla as source/fake domain, A set of real images as real domain). I created fake_gbuffers, created patches, matched them, and all is working correctly.

    For some reason, at iteration a little above 5000, the function clip_gradient_norm throws Error/Warning, and from that point on the reconstructed images are black, and all outputs are 0/nan. I checked, and clip_gradient_norm results in a NAN value, hence the error.

    Looking at the tensor itself, it seems that most values(weights) are indeed very close to 0.

    My question is what do you think can cause this? a few notes that might be relevant:

    1. source domain is RGB, target is grayscale (I don't see why would that be a problem actually)
    2. I have (currently, just as a test) 100 images from each domain. In general, I have a total of 100k images from each domain so that won't be a problem...

    Thanks.

    opened by EyalMichaeli 16
  • MSeg difficulties

    MSeg difficulties

    Does anyone either know an alternative to mseg or how one might get mseg to work on windows 10? I tried installing it but it is giving me an error saying that it can only be installed on linux or mac osx. Thanks!

    opened by char119 9
  • Code and data release

    Code and data release

    Hello,

    You have done really a great work! I really appreciate your contribution! And, I want to know if there is any promotion in code and data sharing?

    Thanks

    opened by Mrsirovo 9
  • Problem in training

    Problem in training

    I am using my data to train the discriminator, I kept the code as it is and my data images are 960x540, I used your code to simulate the Gbuffers and your code to generate the crops and matching. When training, the data is loaded correctly and starts showing values, but soon after (about 1 hour), all values were replaced by nan, can you help me?

    2022-05-08 16:27:05,927 17940 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:06,367 17941 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:07,162 17942 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:07,604 17943 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:08,380 17944 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:08,827 17945 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:09,623 17946 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:10,044 17947 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:10,852 17948 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:11,263 17949 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:12,092 17950 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:12,505 17951 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:13,318 17952 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:13,728 17953 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:14,549 17954 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:14,972 17955 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:15,841 17956 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:16,254 17957 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:17,068 17958 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:17,484 17959 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:18,317
    2022-05-08 16:27:18,318 17960 rdf0 ds0  rdf1 ds1  rdf2 ds2  rdf3 ds3  rdf4 ds4  rdf5 ds5  rdf6 ds6  rdf7 ds7  rdf8 ds8  rdf9 ds9  rdr0 rdr1 rdr2 rdr3 rdr4 rdr5 rdr6 rdr7 rdr8 rdr9 reg  gs0  gs1  gs2  gs3  gs4  gs5  gs6  gs7  gs8  gs9  vgg
    2022-05-08 16:27:18,319 17960 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:18,755 17961 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:19,542 17962 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:19,970 17963 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:20,772 17964 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:21,219 17965 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:22,026 17966 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:22,444 17967 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:23,269 17968 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:23,728 17969 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:24,528 17970 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:24,976 17971 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    ^[[B^[[B^[[B^[[B^[[B^[[B2022-05-08 16:27:25,746 17972 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:26,180 17973 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:26,992 17974 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:27,433 17975 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:28,269 17976 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:28,729 17977 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    2022-05-08 16:27:29,522 17978 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 nan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
    2022-05-08 16:27:29,948 17979 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- nan nan nan nan nan nan nan nan nan nan nan
    
    
    opened by ZouaghiHoussem 5
  • Is discriminator training properly?

    Is discriminator training properly?

    Hi, Below is the snippet of the training log from training on a similar dataset I put together. It featues a real dataset from Houzz and an artificial dataset of GTAV buildings. Could you explain why I get a get loss update at each iteration for the generator but only occasional updates for the discriminator? I can't tell if this is intentional or if I made a mistake along the way.

    I've also noticed that for the .mat files saved in /out store ['i_fake'] and ['i_real] correctly, but ['i_rec_fake] is filled with NaN. Testing the network produces entirely black images.

    Sorry, this is probably too wide to format correctly... 2022-04-19 22:53:09,737 346880 rdf0 ds0 rdf1 ds1 rdf2 ds2 rdf3 ds3 rdf4 ds4 rdf5 ds5 rdf6 ds6 rdf7 ds7 rdf8 ds8 rdf9 ds9 rdr0 rdr1 rdr2 rdr3 rdr4 rdr5 rdr6 rdr7 rdr8 rdr9 reg gs0 gs1 gs2 gs3 gs4 gs5 gs6 gs7 gs8 gs9 vgg 2022-04-19 22:53:09,737 346880 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:10,071 346881 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.02 0.99 0.99 1.04 0.99 0.99 1.03 0.98 0.97 1.05 0.72 2022-04-19 22:53:11,022 346882 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:11,034 346883 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.01 1.02 1.00 1.06 1.03 1.01 1.08 0.98 1.00 1.04 0.64 2022-04-19 22:53:11,983 346884 0.00 0.00 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.00 ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.00 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:12,328 346885 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.04 1.03 0.99 1.04 1.02 1.02 1.07 0.97 0.97 1.03 0.24 2022-04-19 22:53:13,278 346886 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:13,625 346887 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.03 1.02 0.99 1.05 1.03 1.01 1.07 0.97 0.98 1.03 0.50 2022-04-19 22:53:14,576 346888 ---- ---- ---- ---- ---- ---- ---- ---- 0.00 0.00 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.00 ---- ---- ---- ---- ---- 0.00 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:14,588 346889 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.00 1.01 0.99 1.06 1.04 1.02 1.07 0.98 1.00 1.04 0.70 2022-04-19 22:53:15,540 346890 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.00 0.00 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.00 ---- ---- ---- ---- 0.00 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:15,551 346891 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.01 1.02 1.00 1.06 1.05 0.93 1.09 0.97 1.00 1.04 0.79 2022-04-19 22:53:16,497 346892 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:16,509 346893 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.99 1.02 1.00 1.06 1.05 0.92 1.09 0.98 1.01 1.04 0.80 2022-04-19 22:53:17,461 346894 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:17,472 346895 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.00 1.02 1.00 1.06 1.04 0.93 1.09 0.98 1.01 1.04 0.73 2022-04-19 22:53:18,424 346896 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:18,436 346897 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.02 1.02 1.00 1.05 1.03 0.94 1.08 0.98 1.00 1.03 0.58 2022-04-19 22:53:19,387 346898 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 2022-04-19 22:53:19,399 346899 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.00 1.02 1.00 1.06 1.05 0.93 1.09 0.98 1.01 1.04 0.73

    opened by TiPEX360 4
  • Reversing the input and output

    Reversing the input and output

    I could not find how to contact you direclty, and issues are not the place for this, but I was really curious if we could reverse the process. What I mean by that is if we used photorealistic images as the input, could convert them into much cartoony or fictional(?) ones?

    opened by alpkabac 4
  • You Should Hire Luke Ross... No Idea? Read Why, Here....

    You Should Hire Luke Ross... No Idea? Read Why, Here....

    I have no affiliation with Luke Ross, I'm just a GTA player.

    But the reason I suggest getting in contact with him, is because he has managed to get deep in to the GTA engine, to create a VR mod.

    I read a load of information regarding how he was able to achieve this, and from my limited understanding, the things he understands about the game engine, could help you get deeper into the game's engine, allowing faster rendering with those g-buffers. (Which I believe Luke Ross has experience with, to get the VR system to work).

    His GitHub name is @LukeRoss00 (ok looks like I cant tag him)... https://github.com/LukeRoss00/ (I hope I'm allowed to to that, forgive me if links aren't allowed.

    But yeah, I love the video demonstration, its got me excited to see how this system can be implemented in loads of games.

    Like, imagine flight simulator games, paired with a satalite imagery dataset... Slow moving gameplay allows for plenty of time to render stuff...

    Truck Simulator games, where the driving style is realistic, and less busy than gta, I'd love that myself since I love just driving around in VR, with a wheel.

    Please, I know it's hard, but...... Keep VR in mind..... Too many developers are brushing off VR, but.... if this became stable, and then VR on top, that would literally be a break through in technological development.... possibly Nobel prise winning, since it really would be a milestone in realtime computer generated photorealism....

    Also, can we keep multi gpu support in mind? Because I would quite happily fork out for x4 3090 cards, if the software could benefit from multiple cards... Would multiple cards be able to get that half a second render time, down to a quarter, or an 8th?

    opened by dailafing 4
  • Number of image channels the provided G-buffers contain

    Number of image channels the provided G-buffers contain

    Hi, very interesting work! I have a question. In epe/dataset/pfd.py, it says that number of channels G-buffers contain is {'fake':32, 'all':26, 'img':0, 'no_light':17, 'geometry':8}. Where do these numbers come from? I looked Playing for Data but couldn't find them. Thank you for any help.

    opened by hodakagoto 3
  • Sigmoid missing in hr_new?

    Sigmoid missing in hr_new?

    Hello, I've noticed that when using the hr_new network the rec_fake (output of the generator) seems to have an unbounded value range. Compared to the loaded fake and real image which have pixels values bounded between [0, 1]

    https://github.com/isl-org/PhotorealismEnhancement/blob/6936e62a96fc2d913cdd66463d113f7d591d09aa/code/epe/EPEExperiment.py#L204-L209

    The 'hr' option uses the ResidualGenerator which uses a sigmoid on the output to bound the output between [0, 1] https://github.com/isl-org/PhotorealismEnhancement/blob/6936e62a96fc2d913cdd66463d113f7d591d09aa/code/epe/network/generator.py#L4-L6

    However the PassthruGenerator which 'hr_new' uses doesn't have any sigmoid on the output.

    Is this a bug? since it seems that the output image should be bounded [0,1] just as the real image is

    opened by KacperKazan 2
  • Question

    Question

    Hi, my name is Luan I would like to know how I can use this AI Code to turn CGI Video or Photo to Photorealism Enhancement with subjects like Humans and Animals with and without fur, to reach a more realistic video.Thank You Sir,Best, Luan Dal Orto Vaz.

    opened by LuanDalOrto 2
  • Getting this working is Linux required?

    Getting this working is Linux required?

    Hi Guys,

    Firstly love your great work, I'm fascinated by this subject . I would like to experiment with this using some of my own data and curious to see what results I can get. But task1 is to just get this working. I'm a CGI artist and Python developer but I use Windows. To get this working with all the prerequisites is Linux required? I am willing to switch over to Lunix to work on this but would like to know if that's necessary.

    Thank you for your time. Mark.

    opened by mrwal3 2
  • RuntimeError while training

    RuntimeError while training

    RuntimeError: Input and output sizes should be greater than 0, but got input (H: 196, W: 0) output (H: 13, W: 13)

    any idea what could be the possible reason ?

    opened by sandip824 0
  • ValueError when saving model

    ValueError when saving model

    I followed through the whole workflow with little trouble and after setting everything up I'm getting this error upon saving the model before training starts.

    2022-11-09 17:15:04,408 Saving model to savegames/pfd2cs_ie2-0-break.
    2022-11-09 17:15:07,098 Unexpected error: <class 'ValueError'>
    Traceback (most recent call last):
      File "code/epe/EPEExperiment.py", line 390, in <module>
        experiment.run()
      File "/mnt/b/Dev/cv-gta/code/epe/experiment/BaseExperiment.py", line 636, in run
        self.__getattribute__(self.action)()
      File "/mnt/b/Dev/cv-gta/code/epe/experiment/BaseExperiment.py", line 543, in train
        for batch in self.loader:
      File "/home/chanka/anaconda3/envs/torch/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 628, in __next__
        data = self._next_data()
      File "/home/chanka/anaconda3/envs/torch/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1333, in _next_data
        return self._process_data(data)
      File "/home/chanka/anaconda3/envs/torch/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1359, in _process_data
        data.reraise()
      File "/home/chanka/anaconda3/envs/torch/lib/python3.8/site-packages/torch/_utils.py", line 543, in reraise
        raise exception
    ValueError: Caught ValueError in DataLoader worker process 0.
    Original Traceback (most recent call last):
      File "/home/chanka/anaconda3/envs/torch/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 302, in _worker_loop
        data = fetcher.fetch(index)
      File "/home/chanka/anaconda3/envs/torch/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 58, in fetch
        data = [self.dataset[idx] for idx in possibly_batched_index]
      File "/home/chanka/anaconda3/envs/torch/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 58, in <listcomp>
        data = [self.dataset[idx] for idx in possibly_batched_index]
      File "/mnt/b/Dev/cv-gta/code/epe/matching/paired.py", line 108, in __getitem__
        idx = np.min(np.nonzero(p<self._cumsum)[0])
      File "<__array_function__ internals>", line 180, in amin
      File "/home/chanka/anaconda3/envs/torch/lib/python3.8/site-packages/numpy/core/fromnumeric.py", line 2918, in amin
        return _wrapreduction(a, np.minimum, 'min', axis, None, out,
      File "/home/chanka/anaconda3/envs/torch/lib/python3.8/site-packages/numpy/core/fromnumeric.py", line 86, in _wrapreduction
        return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
    ValueError: zero-size array to reduction operation minimum which has no identity
    

    Help would be appreciated.

    opened by Chanka0 2
  • Attribute error in sample_matches.py

    Attribute error in sample_matches.py

    Hello,

    Thanks for the great work. Inside matching/feature_based/sample_matches.py the images are loaded by calling get_by_path method of the datasets.

    Screen Shot 2022-04-08 at 19 23 12

    However, the ImageDataset class does not have such an attribute, so this ends up with an error. Replacing that with the _load_img method and applying ToTensor() on its output solved the issue for me.

    For your notice. Cheers!

    opened by acerdur 2
Releases(v0.1.0)
  • v0.1.0(Jan 12, 2022)

    What's Changed

    • Initial code release. by @srrichter in https://github.com/isl-org/PhotorealismEnhancement/pull/14

    Full Changelog: https://github.com/isl-org/PhotorealismEnhancement/commits/v0.1.0

    Source code(tar.gz)
    Source code(zip)
Owner
Intelligent Systems Lab Org
Intelligent Systems Lab Org
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022