Posterior predictive distributions quantify uncertainties ignored by point estimates.

Overview

The Neural Testbed

Neural Testbed Logo

Introduction

Posterior predictive distributions quantify uncertainties ignored by point estimates. The neural_testbed provides tools for the systematic evaluation of agents that generate such predictions. Crucially, these tools assess not only the quality of marginal predictions per input, but also joint predictions given many inputs. Joint distributions are often critical for useful uncertainty quantification, but they have been largely overlooked by the Bayesian deep learning community.

This library automates the evaluation and analysis of learning agents:

  • Synthetic neural-network-based generative model.
  • Evaluate predictions beyond marginal distributions.
  • Reference implementations of benchmark agents (with tuning).

For a more comprehensive overview, see the accompanying paper.

Technical overview

We outline the key high-level interfaces for our code in base.py:

  • EpistemicSampler: Generates a random sample from agent's predictive distribution.
  • TestbedAgent: Given data, prior_knowledge outputs an EpistemicSampler.
  • TestbedProblem: Reveals training_data, prior_knowledge. Can evaluate the quality of an EpistemicSampler.

If you want to evaluate your algorithm on the testbed, you simply need to define your TestbedAgent and then run it on our experiment.py

def run(agent: testbed_base.TestbedAgent,
        problem: testbed_base.TestbedProblem) -> testbed_base.ENNQuality:
  """Run an agent on a given testbed problem."""
  enn_sampler = agent(problem.train_data, problem.prior_knowledge)
  return problem.evaluate_quality(enn_sampler)

The neural_testbed takes care of the evaluation/logging within the TestbedProblem. This means that the experiment will automatically output data in the correct format. This makes it easy to compare results from different codebases/frameworks, so you can focus on agent design.

How do I get started?

If you are new to neural_testbed you can get started in our colab tutorial. This Jupyter notebook is hosted with a free cloud server, so you can start coding right away without installing anything on your machine. After this, you can follow the instructions below to get neural_testbed running on your local machine:

Installation

We have tested neural_testbed on Python 3.7. To install the dependencies:

  1. Optional: We recommend using a Python virtual environment to manage your dependencies, so as not to clobber your system installation:

    python3 -m venv neural_testbed
    source neural_testbed/bin/activate
    pip install --upgrade pip setuptools
  2. Install neural_testbed directly from github:

    git clone https://github.com/deepmind/neural_testbed.git
    cd neural_testbed
    pip install .
  3. Optional: run the tests by executing ./test.sh from the neural_testbed main directory.

Baseline agents

In addition to our testbed code, we release a collection of benchmark agents. These include the full sets of hyperparameter sweeps necessary to reproduce the paper's results, and can serve as a great starting point for new research. You can have a look at these implementations in the agents/factories/ folder.

We recommended you get started with our colab tutorial. After intallation you can also run an agent directly by executing the following command from the main directory of neural_testbed:

python -m neural_testbed.experiments.run --agent_name=mlp

By default, this will save the results for that agent to csv at /tmp/neural_testbed. You can control these options by flags in the run file. In particular, you can run the agent on the whole sweep of tasks in the Neural Testbed by specifying the flag --problem_id=SWEEP.

Citing

If you use neural_testbed in your work, please cite the accompanying paper:

@misc{osband2021evaluating,
      title={Evaluating Predictive Distributions: Does Bayesian Deep Learning Work?},
      author={Ian Osband and Zheng Wen and Seyed Mohammad Asghari and Vikranth Dwaracherla and Botao Hao and Morteza Ibrahimi and Dieterich Lawson and Xiuyuan Lu and Brendan O'Donoghue and Benjamin Van Roy},
      year={2021},
      eprint={2110.04629},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
DeepMind
DeepMind
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil GoÅ› 1 Nov 24, 2021
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
JugLab 33 Dec 30, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023