Posterior predictive distributions quantify uncertainties ignored by point estimates.

Overview

The Neural Testbed

Neural Testbed Logo

Introduction

Posterior predictive distributions quantify uncertainties ignored by point estimates. The neural_testbed provides tools for the systematic evaluation of agents that generate such predictions. Crucially, these tools assess not only the quality of marginal predictions per input, but also joint predictions given many inputs. Joint distributions are often critical for useful uncertainty quantification, but they have been largely overlooked by the Bayesian deep learning community.

This library automates the evaluation and analysis of learning agents:

  • Synthetic neural-network-based generative model.
  • Evaluate predictions beyond marginal distributions.
  • Reference implementations of benchmark agents (with tuning).

For a more comprehensive overview, see the accompanying paper.

Technical overview

We outline the key high-level interfaces for our code in base.py:

  • EpistemicSampler: Generates a random sample from agent's predictive distribution.
  • TestbedAgent: Given data, prior_knowledge outputs an EpistemicSampler.
  • TestbedProblem: Reveals training_data, prior_knowledge. Can evaluate the quality of an EpistemicSampler.

If you want to evaluate your algorithm on the testbed, you simply need to define your TestbedAgent and then run it on our experiment.py

def run(agent: testbed_base.TestbedAgent,
        problem: testbed_base.TestbedProblem) -> testbed_base.ENNQuality:
  """Run an agent on a given testbed problem."""
  enn_sampler = agent(problem.train_data, problem.prior_knowledge)
  return problem.evaluate_quality(enn_sampler)

The neural_testbed takes care of the evaluation/logging within the TestbedProblem. This means that the experiment will automatically output data in the correct format. This makes it easy to compare results from different codebases/frameworks, so you can focus on agent design.

How do I get started?

If you are new to neural_testbed you can get started in our colab tutorial. This Jupyter notebook is hosted with a free cloud server, so you can start coding right away without installing anything on your machine. After this, you can follow the instructions below to get neural_testbed running on your local machine:

Installation

We have tested neural_testbed on Python 3.7. To install the dependencies:

  1. Optional: We recommend using a Python virtual environment to manage your dependencies, so as not to clobber your system installation:

    python3 -m venv neural_testbed
    source neural_testbed/bin/activate
    pip install --upgrade pip setuptools
  2. Install neural_testbed directly from github:

    git clone https://github.com/deepmind/neural_testbed.git
    cd neural_testbed
    pip install .
  3. Optional: run the tests by executing ./test.sh from the neural_testbed main directory.

Baseline agents

In addition to our testbed code, we release a collection of benchmark agents. These include the full sets of hyperparameter sweeps necessary to reproduce the paper's results, and can serve as a great starting point for new research. You can have a look at these implementations in the agents/factories/ folder.

We recommended you get started with our colab tutorial. After intallation you can also run an agent directly by executing the following command from the main directory of neural_testbed:

python -m neural_testbed.experiments.run --agent_name=mlp

By default, this will save the results for that agent to csv at /tmp/neural_testbed. You can control these options by flags in the run file. In particular, you can run the agent on the whole sweep of tasks in the Neural Testbed by specifying the flag --problem_id=SWEEP.

Citing

If you use neural_testbed in your work, please cite the accompanying paper:

@misc{osband2021evaluating,
      title={Evaluating Predictive Distributions: Does Bayesian Deep Learning Work?},
      author={Ian Osband and Zheng Wen and Seyed Mohammad Asghari and Vikranth Dwaracherla and Botao Hao and Morteza Ibrahimi and Dieterich Lawson and Xiuyuan Lu and Brendan O'Donoghue and Benjamin Van Roy},
      year={2021},
      eprint={2110.04629},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
DeepMind
DeepMind
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Abhinav Gupta 1 Nov 19, 2021
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
2 Jul 19, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022