Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Overview

Learning-Action-Completeness-from-Points

Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV 2021 Oral)

architecture

Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization
Pilhyeon Lee (Yonsei Univ.), Hyeran Byun (Yonsei Univ.)

Paper: https://arxiv.org/abs/2108.05029

Abstract: We tackle the problem of localizing temporal intervals of actions with only a single frame label for each action instance for training. Owing to label sparsity, existing work fails to learn action completeness, resulting in fragmentary action predictions. In this paper, we propose a novel framework, where dense pseudo-labels are generated to provide completeness guidance for the model. Concretely, we first select pseudo background points to supplement point-level action labels. Then, by taking the points as seeds, we search for the optimal sequence that is likely to contain complete action instances while agreeing with the seeds. To learn completeness from the obtained sequence, we introduce two novel losses that contrast action instances with background ones in terms of action score and feature similarity, respectively. Experimental results demonstrate that our completeness guidance indeed helps the model to locate complete action instances, leading to large performance gains especially under high IoU thresholds. Moreover, we demonstrate the superiority of our method over existing state-of-the-art methods on four benchmarks: THUMOS'14, GTEA, BEOID, and ActivityNet. Notably, our method even performs comparably to recent fully-supervised methods, at the 6 times cheaper annotation cost.

Prerequisites

Recommended Environment

  • Python 3.6
  • Pytorch 1.6
  • Tensorflow 1.15 (for Tensorboard)
  • CUDA 10.2

Depencencies

You can set up the environments by using $ pip3 install -r requirements.txt.

Data Preparation

  1. Prepare THUMOS'14 dataset.

    • We excluded three test videos (270, 1292, 1496) as previous work did.
  2. Extract features with two-stream I3D networks

    • We recommend extracting features using this repo.
    • For convenience, we provide the features we used. You can find them here.
  3. Place the features inside the dataset folder.

    • Please ensure the data structure is as below.
├── dataset
   └── THUMOS14
       ├── gt.json
       ├── split_train.txt
       ├── split_test.txt
       ├── fps_dict.json
       ├── point_gaussian
           └── point_labels.csv
       └── features
           ├── train
               ├── rgb
                   ├── video_validation_0000051.npy
                   ├── video_validation_0000052.npy
                   └── ...
               └── flow
                   ├── video_validation_0000051.npy
                   ├── video_validation_0000052.npy
                   └── ...
           └── test
               ├── rgb
                   ├── video_test_0000004.npy
                   ├── video_test_0000006.npy
                   └── ...
               └── flow
                   ├── video_test_0000004.npy
                   ├── video_test_0000006.npy
                   └── ...

Usage

Running

You can easily train and evaluate the model by running the script below.

If you want to try other training options, please refer to options.py.

$ bash run.sh

Evaulation

The pre-trained model can be found here. You can evaluate the model by running the command below.

$ bash run_eval.sh

References

We note that this repo was built upon our previous models.

  • Background Suppression Network for Weakly-supervised Temporal Action Localization (AAAI 2020) [paper] [code]
  • Weakly-supervised Temporal Action Localization by Uncertainty Modeling (AAAI 2021) [paper] [code]

We referenced the repos below for the code.

In addition, we referenced a part of code in the following repo for the greedy algorithm implementation.

Citation

If you find this code useful, please cite our paper.

@inproceedings{lee2021completeness,
  title={Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization},
  author={Pilhyeon Lee and Hyeran Byun},
  booktitle={IEEE/CVF International Conference on Computer Vision},
  year={2021},
}

Contact

If you have any question or comment, please contact the first author of the paper - Pilhyeon Lee ([email protected]).

Owner
Pilhyeon Lee
* Ph.D. student in Yonsei Univ. (2018.03.~present)            
Pilhyeon Lee
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022