A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

Overview

GFNet-Pytorch (NeurIPS 2020)

This repo contains the official code and pre-trained models for the glance and focus network (GFNet).

Citation

@inproceedings{NeurIPS2020_7866,
        title = {Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in Image Classification},
       author = {Wang, Yulin and Lv, Kangchen and Huang, Rui and Song, Shiji and Yang, Le and Huang, Gao},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
         year = {2020},
}

Update on 2020/10/08: Release Pre-trained Models and the Inference Code on ImageNet.

Update on 2020/12/28: Release Training Code.

Introduction

Inspired by the fact that not all regions in an image are task-relevant, we propose a novel framework that performs efficient image classification by processing a sequence of relatively small inputs, which are strategically cropped from the original image. Experiments on ImageNet show that our method consistently improves the computational efficiency of a wide variety of deep models. For example, it further reduces the average latency of the highly efficient MobileNet-V3 on an iPhone XS Max by 20% without sacrificing accuracy.

Results

  • Top-1 accuracy on ImageNet v.s. Multiply-Adds

  • Top-1 accuracy on ImageNet v.s. Inference Latency (ms) on an iPhone XS Max

  • Visualization

Pre-trained Models

Backbone CNNs Patch Size T Links
ResNet-50 96x96 5 Tsinghua Cloud / Google Drive
ResNet-50 128x128 5 Tsinghua Cloud / Google Drive
DenseNet-121 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-169 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-201 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-600MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-800MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-1.6GF 96x96 5 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 96x96 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 128x128 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.25) 128x128 3 Tsinghua Cloud / Google Drive
EfficientNet-B2 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 144x144 4 Tsinghua Cloud / Google Drive
  • What are contained in the checkpoints:
**.pth.tar
├── model_name: name of the backbone CNNs (e.g., resnet50, densenet121)
├── patch_size: size of image patches (i.e., H' or W' in the paper)
├── model_prime_state_dict, model_state_dict, fc, policy: state dictionaries of the four components of GFNets
├── model_flops, policy_flops, fc_flops: Multiply-Adds of inferring the encoder, patch proposal network and classifier for once
├── flops: a list containing the Multiply-Adds corresponding to each length of the input sequence during inference
├── anytime_classification: results of anytime prediction (in Top-1 accuracy)
├── dynamic_threshold: the confidence thresholds used in budgeted batch classification
├── budgeted_batch_classification: results of budgeted batch classification (a two-item list, [0] and [1] correspond to the two coordinates of a curve)

Requirements

  • python 3.7.7
  • pytorch 1.3.1
  • torchvision 0.4.2
  • pyyaml 5.3.1 (for RegNets)

Evaluate Pre-trained Models

Read the evaluation results saved in pre-trained models

CUDA_VISIBLE_DEVICES=0 python inference.py --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 0

Read the confidence thresholds saved in pre-trained models and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 1

Determine confidence thresholds on the training set and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 2

The dataset is expected to be prepared as follows:

ImageNet
├── train
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...
├── val
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...

Training

  • Here we take training ResNet-50 (96x96, T=5) for example. All the used initialization models and stage-1/2 checkpoints can be found in Tsinghua Cloud / Google Drive. Currently, this link includes ResNet and MobileNet-V3. We will update it as soon as possible. If you need other helps, feel free to contact us.

  • The Results in the paper is based on 2 Tesla V100 GPUs. For most of experiments, up to 4 Titan Xp GPUs may be enough.

Training stage 1, the initializations of global encoder (model_prime) and local encoder (model) are required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 1 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --model_prime_path PATH_TO_CHECKPOINTS  --model_path PATH_TO_CHECKPOINTS

Training stage 2, a stage-1 checkpoint is required:

CUDA_VISIBLE_DEVICES=0 python train.py --data_url PATH_TO_DATASET --train_stage 2 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Training stage 3, a stage-2 checkpoint is required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 3 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Contact

If you have any question, please feel free to contact the authors. Yulin Wang: [email protected].

Acknowledgment

Our code of MobileNet-V3 and EfficientNet is from here. Our code of RegNet is from here.

To Do

  • Update the code for visualizing.

  • Update the code for MIXED PRECISION TRAINING。

Owner
Rainforest Wang
Rainforest Wang
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022