Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Related tags

Deep LearningTDCMN
Overview

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

This is a PyTorch implementation of the model described in our paper:

Z. Qi, S. Wang, C. Su, L. Su, W. Zhang, and Q. Huang. Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis. ACM MM 2020.

Dependencies

  • Pytorch 1.2.0
  • Cuda 9.2.148
  • Cudnn 7.6.2
  • Opencv-python 4.2.0.34
  • Python 3.6.9

Data

Dataset Prepare

  1. Download the pre-trained concept detector weights from Baidu passward 'wv0e' or Google Grive and put them in folder weights/

  2. Download the FCVID dataset from http://bigvid.fudan.edu.cn/FCVID/.

  3. The annotation information of each dataset is provided in folder data/FCVID/video_labels.

  4. Extract the video frames for each video and put the extracted frames in folder data/FCVID/frames/.

    For ActivityNet dataset ( http://activity-net.org/. ) , we use the latest released version of the dataset (v1.3).

Train

  • python main.py --gpu_ids 0,1 --model_name tdcmn_si_soa --dataset FCVID --no_test

    for other hyperparameters, please refer to opts.py file.

Test

  • Pretrained model weigths are avaiable in Baidu passward 'szlk' or Google Grive

  • Download the pre-trained weights and put them in folder results/

  • python main.py --gpu_ids 0,1 --model_name tdcmn_si_soa --dataset FCVID --resume_path pretrained_model/tdcmn_si_soa.pth --no_train --test_crop_number 1

Citation

Please cite our paper if you use this code in your own work:

@inproceedings{qi2020modeling,
  title={Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis},
  author={Qi, Zhaobo and Wang, Shuhui and Su, Chi and Su, Li and Zhang, Weigang and Huang, Qingming},
  booktitle={Proceedings of the 28th ACM International Conference on Multimedia},
  pages={3798--3806},
  year={2020}
}

Contcat

If you have any problem about our code, feel free to contact

Owner
qzhb
Video Understanding
qzhb
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022