Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Overview

Mining the Social Web, 3rd Edition

The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Amazon and Safari Books Online.

The notebooks folder of this repository contains the latest bug-fixed sample code used in the book chapters.

Quickstart

Binder

The easiest way to start playing with code right away is to use Binder. Binder is a service that takes a GitHub repository containing Jupyter Notebooks and spins up a cloud-based server to run them. You can start experimenting with the code without having to install anything on your machine. Click the badge above, or follow this link to get started right away.

NOTE: Binder will not save your files on its servers. During your next session, it will be a completely fresh instantiation of this repository. If you need a more persistent solution, consider running the code on your own machine.

Getting started on your own machine using Docker

  1. Install Docker
  2. Install repo2docker: pip install jupyter-repo2docker
  3. From the command line:
repo2docker https://github.com/mikhailklassen/Mining-the-Social-Web-3rd-Edition

This will create a Docker container from the repository directly. It takes a while to finish building the container, but once it's done, you will see a URL printed to screen. Copy and paste the URL into your browser.

A longer set of instructions can be found here.

Getting started on your own machine from source

If you are familiar with git and have a git client installed on your machine, simply clone the repository to your own machine. However, it is up to you to install all the dependencies for the repository. The necessary Python libraries are detailed in the requirements.txt file. The other requirements are detailed in the Requirements section below.

If you prefer not to use a git client, you can instead download a zip archive directly from GitHub. The only disadvantage of this approach is that in order to synchronize your copy of the code with any future bug fixes, you will need to download the entire repository again. You are still responsible for installing any dependencies yourself.

Install all the prerequisites using pip:

pip install -r requirements.txt

Once you're done, step into the notebooks directory and launch the Jupyter notebook server:

jupyter notebook

Side note on MongoDB

If you wish to complete all the examples in Chapter 9, you will need to install MongoDB. We do not provide support on how to do this. This is for more advanced users and is really only relevant to a few examples in Chapter 9.

Contributing

There are several ways in which you can contribute to the project. If you discover a bug in any of the code, the first thing to do is to create a new issue under the Issues tab of this repository. If you are a developer and would like to contribute a bug fix, please feel free to fork the repository and submit a pull request.

The code is provided "as-is" and we make no guarantees that it is bug-free. Keep in mind that we access the APIs of various social media platforms and their APIs are subject to change. Since the start of this project, various social media platforms have tightened the permissions on their platform. Getting full use out of all the code in this book may require submitting an application the social media platform of your choice for approval. Despite these restrictions, we hope that the code still provides plenty of flexibility and opportunities to go deeper.

Owner
Mikhail Klassen
Co-Founder and CTO at @PaladinAI. PhD, astrophysics. I specialize in machine learning, AI, data mining, and data visualization.
Mikhail Klassen
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022