MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

Related tags

Deep LearningMAg
Overview

MAg

Paper

This is code and some potentially useful data of the paper MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images.

Our paper has been accepted in the IEEE International Symposium on Biomedical Imaging (ISBI) 2022. And the arXiv link is here: https://arxiv.org/abs/2201.04769.

Abstract

MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

The prediction of microsatellite instability (MSI) and microsatellite stability (MSS) is essential in predicting both the treatment response and prognosis of gastrointestinal cancer. In clinical practice, a universal MSI testing is recommended, but the accessibility of such a test is limited. Thus, a more cost-efficient and broadly accessible tool is desired to cover the traditionally untested patients. In the past few years, deep-learning-based algorithms have been proposed to predict MSI directly from haematoxylin and eosin (H&E)-stained whole-slide images (WSIs). Such algorithms can be summarized as (1) patch-level MSI/MSS prediction, and (2) patient-level aggregation. Compared with the advanced deep learning approaches that have been employed for the first stage, only the naïve first-order statistics (e.g., averaging and counting) were employed in the second stage. In this paper, we propose a simple yet broadly generalizable patient-level MSI aggregation (MAg) method to effectively integrate the precious patch-level information. Briefly, the entire probabilistic distribution in the first stage is modeled as histogram-based features to be fused as the final outcome with machine learning (e.g., SVM). The proposed MAg method can be easily used in a plug-and-play manner, which has been evaluated upon five broadly used deep neural networks: ResNet, MobileNetV2, EfficientNet, Dpn and ResNext. From the results, the proposed MAg method consistently improves the accuracy of patient-level aggregation for two publicly available datasets. It is our hope that the proposed method could potentially leverage the low-cost H&E based MSI detection method. The comparison of our method and the two common used method (counting and averaging) is shown below:


The proposed method is shown in figure below:

File structure

Here is the structure of the MAg file:

image

Dataset prepare

1.The whole patch-level datasets can be downloaded from https://zenodo.org/record/2530835#.YXIlO5pBw2z. Each patch in this folder belongs to a patient, and the file name of the patch can be used to get to which patient it belongs. For example, the patch blk-AAAFIYHTSVIE-TCGA-G4-6309-01Z-00-DX1.png belongs to the patient TCGA-G4-6309.

2.We have split the CRC_DX and STAD datasets into training set, validation set and testing set in the patient-level. So after downloading them from the link, please split the dataset according to the patient name we list in the name_patient file.

3.Certainly, if you want to change the way of splitting the data set, you can also split the data set by yourself. For your reference, you can use the code in link https://github.com/jnkather/MSIfromHE/blob/master/step_05_split_train_test.m to do this split.

Data description

For your experiment to go smoothly, this is the description of some data you may use to input or output in the process of reproducing the MAg:

1.In the code 2.0.patch2image_counting.ipynb, you will use the files which supply names of patients and these files are placed in the file /MAg/name_patients/. The names of patients are provided in this folder according to different datasets, sets and classes.

NOTE: in the experiment, you will encounter some patient-level for loops in the code, so please modify the range parameters in the for loops according to the number of patients in different sets and different classes.

2.In the code 2.1.patient-level MAg-SVM_histogram.ipynb and 2.2.patient-level MAg-network.ipynb, you will use histogram-based features as the new training set, testing set and validation set, which will be obtained by 2.0. If you just want to test the performance of MAg instead of doing a complete reproduction, we also provide the histogram-based features in our experiments here: /MAg/datasets, according to different patch-level datasets, sets, models and classes.

3.In order to compare the performance of MAg and other baselines, you may also use the results of other baselines in the code. We have provided the results with counting baseline in this folder: /MAg/results/counting_baselines_results according to different patch-level classification models, which can also been obtained from 2.0.

4.Moreover, for your reference, we provide the results of each patch in this folder: /MAg/results/patch_level_result/.

5.We also provide names of patches in the folder /MAg/name_patch/

How to use MAg?

The code of our method is in the demo file. Follow the steps below, you can easily use MAg to complete training and prediction.

1.Firstly, please use 1.patch-level classification training.ipynb to do patch-level training and get classification models. The Timm library is such a creative invention that it can help you easily complete this training process. For example, if you want to use ResNet18 in this stage, just use the code below after entering the working file:

import timm
!python train.py path_to_your_dataset -d ImageFolder --drop 0.25 --train-split train --val-split validation --pretrained --model resnet18 --num-classes 2 --opt adam --lr 1e-6 --hflip 0.5 --epochs 40 -b 32 --output path_to_your_model

The script train.py and other scripts useful in Timm can be obtained from this link: https://github.com/rwightman/pytorch-image-models Also, here are some very helpful links that teachs you how to use Timm: https://fastai.github.io/timmdocs/ and https://rwightman.github.io/pytorch-image-models/

2.Secondly, after using the above process to obtain the classification model in the patch-level, you can use 2.0.patch2image_counting.ipynb to make the patch-level prediction. In this process, just follow the operation of the code in the notebook and you can get patch-level probabilities and histogram-based features.

3.After getting the patch-level model and patient-level histogram-based features from processes above, you can now train the patient-level classification models. Here we provide two different methods to complete this training, which means you can train it in an SVM with 2.1.patient-level MAg-SVM_histogram.ipynb or in a two-layer fully-connected neural network with 2.2.patient-level MAg-network.ipynb. If your dataset is not very large, we suggest you using the 2.1 while you had better use 2.2 if you have a hugh dataset(e.g, a dataset which contains 100000 patients).

4.Both the 2.1 and the 2.2 contain code that can do a simple testing process. After getting the patient-level classification model, just continue following the code in these two notebooks and you will get the final result (e.g, F1 score, BACC and AUC).

NOTE: the patient-level training also require you to follow the split you did before, so please remember to save the patient-level histogram-based features in xlsx files like train.xlsx, validation.xlsx and test.xlsx

5.If you just want to get the reproduced result according to our parameters of SVM, please use the demo reproduce_demo.ipynb.

6.In the demo file, we also provide some notebooks whose file names start with 0. These demos are used by us in our experiment. Although they are not directly related to the MAg process, we think they may be able to help you in your own experiment. Their roles are different. For example, 0.3.confusion_matrix.ipynb can help you calculate a patient-level confusion matrix. The role of each demo can be viewed at the beginning of their code.

Why not try the MAg_lib!

As you can see, these seemingly complex and illogical jupyter notebooks do not achieve the modularity and portability of MAg. So we provide a very early version of the MAg_lib library and hope it can help you call it directly (Up to now, we only provide the MAg method using SVM. In the future, we may add other ML methods into it). Here are some instrutions and tips that may help you when using the MAg_lib.

  1. In the MAg_lib, in order to achieve a more concise code, we no longer use xlsx format files to store data. Instead, we use dict(or json) format to perform the functions. So in MAg_lib.MAg.convert_format, we provide the functions json_file_to_dict and dict_to_json_file to do the conversion task between dict and json file.

  2. Now let us see how to use the much more concise MAg_lib to achieve the MAg task! The functions in this library have their own unique purposes, so we strongly recommend that you open these files before using them and quickly scan the comments of each function to understand their role and input and output formats, and then combine them according to your needs. Here is an example to use it:

First, you need three json files that associate the sample names with the pathes of the patches, corresponding to the training set, validation set, and test set. The format of the files is like:

ce1e16d7a374731442c75fba0598dc4

Second, you need to do the patch-level prediction with the classification which is the same as the step1 in How to use MAg?. With the function in MAg_lib, you can directly get the dict contains patient_level features (Please remember to do this step in all three set so that you can do the next step!). Here is the example code:

import MAg_lib.modules
import timm
model = timm.create_model(model_name, num_classes = 2,checkpoint_path = path_to_model)
save_features_dict = MAg_lib.modules.MAg.get_feature(model,path_to_step1_json,hist_num = 10)

The save_features_dict is like:

c91c1bd0d4fa8d97c6dea70467fa5d5

In fact, the function we provide can directly perform patient-level prediction on the json file containing the name of patches, that is, if you are not interested in getting the features and want to skip it, please use this function directly and you will get the prediction results:

save_predict_dict = MAg_lib.modules.MAg.patient_predict(model, path_to_test_json, method, hist_num, svm)

NOTE: up to know we provide three choices in the parameter method: 'counting', 'averaging', ''MAg, which represent counting baseline, averaging baseline and our MAg method. And the hist_num and svm are required only when you choose 'MAg'.

Then you can get the dict which contains the final patient-level prediction results. The save_predict_dict is like:

ad6ed3f70b04f28cb4f5d5097f762d2

  1. Then you may ask such a question: How can I get the SVM I need in MAg? The sklearn.svm solve it smoothly. In our initial experiments, we manually adjusted the parameters of the SVM to obtain the best performing one on the validation set to do the prediction task. (Please remember to use MAg_lib.modules.convert_format.convert_feature to convert the json file containing features to the feature list for training and validation)

Here we also provide a naive function similar to the grid search method for parameter optimization for your reference. If you have some better optimization methods, please contact us and we are willing to discuss about this topic:

from MAg_lib.modules.MAg import find_best_svm
best_parameters = find_best_svm(X,y,X_val,y_val,['sigmoid'],C,class_weight)

X,yrepresent training set and X_val,y_val represent validation set. The next three parameters are three lists which provide the kernals, penalty coefficients and class weights you want to let this function try.

And BTW, here is another function which can evaluate the performance of SVM:

eval_dict = MAg_lib.modules.MAg.evaluate(X_val,y_val,svm)

Trained models

In the folder trained models, we provide the parameters of the SVMs in our past experiments that can make the model get the best performance on the validation set.

NOTE: if you want to use our data for stage-2 training, these parameters are only applicable to experiments that do not use oversampling on the MSIMUT class, that is, please just set the number of training samples as 188 in CRC_DX and 124 in STAD and do not use the rest copied samples. Or if you want to try to use oversampling on the MSIMUT class, you are more than welcome to tell us your results.

Experiment and results

The experiments were performed on a Google Colab workstation with a NVIDIA Tesla P100 GPU. In stage I, five prevalent approaches have been used to be the baseline feature extractors, including ResNet, MobileNetV2, EfficientNet, Dpn, and ResNext models. And in stage II, we mainly use SVM to complete it. Moreover, to assess the generalizability, the experiments above were done in both the CRC dataset and the STAD dataset. Below is the results of our experiments and comparison between MAg and two commonly used methods (counting and averaging):


Some supplements

Because our research is still in a very early stage of exploration, our code may have some defects. In the future, we may continue to improve the code, hoping that it can achieve higher portability and modularity. If you encounter any problems in the process of using MAg or have any suggestions for this research, please let us know in github or contact us directly 😊

Owner
Calvin Pang
A green hand in Computer Vision and Deep Learning. Dream of becoming an expert. A good product manager is the soul of a team, and this is what I want to be.
Calvin Pang
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

VoxHRNet This is the official implementation of the following paper: Whole Brain Segmentation with Full Volume Neural Network Yeshu Li, Jonathan Cui,

Microsoft 12 Nov 24, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023