Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Overview

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments

[Project website] [Paper]

This project is a PyTorch implementation of Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments, published in CoRL 2020.

Deep reinforcement learning (RL) agents are able to learn contact-rich manipulation tasks by maximizing a reward signal, but require large amounts of experience, especially in environments with many obstacles that complicate exploration. In contrast, motion planners use explicit models of the agent and environment to plan collision-free paths to faraway goals, but suffer from inaccurate models in tasks that require contacts with the environment. To combine the benefits of both approaches, we propose motion planner augmented RL (MoPA-RL) which augments the action space of an RL agent with the long-horizon planning capabilities of motion planners.

Prerequisites

Installation

  1. Install Mujoco 2.0 and add the following environment variables into ~/.bashrc or ~/.zshrc.
# Download mujoco 2.0
$ wget https://www.roboti.us/download/mujoco200_linux.zip -O mujoco.zip
$ unzip mujoco.zip -d ~/.mujoco
$ mv ~/.mujoco/mujoco200_linux ~/.mujoco/mujoco200

# Copy mujoco license key `mjkey.txt` to `~/.mujoco`

# Add mujoco to LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco200/bin

# For GPU rendering (replace 418 with your nvidia driver version)
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-418

# Only for a headless server
$ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so:/usr/lib/nvidia-418/libGL.so
  1. Download this repository and install python dependencies
# Install system packages
sudo apt-get install libgl1-mesa-dev libgl1-mesa-glx libosmesa6-dev patchelf libopenmpi-dev libglew-dev python3-pip python3-numpy python3-scipy

# Download this repository
git clone https://github.com/clvrai/mopa-rl.git

# Install required python packages in your new env
cd mopa-rl
pip install -r requirements.txt
  1. Install ompl
# Linux
sudo apt install libyaml-cpp-dev
sh ./scripts/misc/installEigen.sh #from the home directory # install Eigen

# Mac OS
brew install libyaml yaml-cpp
brew install eigen

# Build ompl
git clone [email protected]:ompl/ompl.git ../ompl
cd ../ompl
cmake .
sudo make install

# if ompl-x.x (x.x is the version) is installed in /usr/local/include, you need to rename it to ompl
mv /usr/local/include/ompl-x.x /usr/local/include/ompl
  1. Build motion planner python wrapper
cd ./mopa-rl/motion_planner
python setup.py build_ext --inplace

Available environments

PusherObstacle-v0 SawyerPushObstacle-v0 SawyerLiftObstacle-v0 SawyerAssemblyObstacle-v0
2D Push Sawyer Push Sawyer Lift Sawyer Assembly

How to run experiments

  1. Launch a virtual display (only for a headless server)
sudo /usr/bin/X :1 &
  1. Train policies
  • 2-D Push
sh ./scripts/2d/baseline.sh  # baseline
sh ./scripts/2d/mopa.sh  # MoPA-SAC
sh ./scripts/2d/mopa_ik.sh  # MoPA-SAC IK
  • Sawyer Push
sh ./scripts/3d/push/baseline.sh  # baseline
sh ./scripts/3d/push/mopa.sh  # MoPA-SAC
sh ./scripts/3d/push/mopa_ik.sh  # MoPA-SAC IK
  • Sawyer Lift
sh ./scripts/3d/lift/baseline.sh  # baseline
sh ./scripts/3d/lift/mopa.sh  # MoPA-SAC
sh ./scripts/3d/lift/mopa_ik.sh  # MoPA-SAC IK
  • Sawyer Assembly
sh ./scripts/3d/assembly/baseline.sh  # baseline
sh ./scripts/3d/assembly/mopa.sh  # MoPA-SAC
sh ./scripts/3d/assembly/mopa_ik.sh  # MoPA-SAC IK

Directories

The structure of the repository:

  • rl: Reinforcement learning code
  • env: Environment code for simulated experiments (2D Push and all Sawyer tasks)
  • config: Configuration files
  • util: Utility code
  • motion_planners: Motion planner code
  • scripts: Scripts for all experiments

Log directories:

  • logs/rl.ENV.DATE.PREFIX.SEED:
    • cmd.sh: A command used for running a job
    • git.txt: Log gitdiff
    • prarms.json: Summary of parameters
    • video: Generated evaulation videos (every evalute_interval)
    • wandb: Training summary of W&B, like tensorboard summary
    • ckpt_*.pt: Stored checkpoints (every ckpt_interval)
    • replay_*.pt: Stored replay buffers (every ckpt_interval)

Trouble shooting

Mujoco GPU rendering

To use GPU rendering for mujoco, you need to add /usr/lib/nvidia-000 (000 should be replaced with your NVIDIA driver version) to LD_LIBRARY_PATH before installing mujoco-py. Then, during mujoco-py compilation, it will show you linuxgpuextension instead of linuxcpuextension. In Ubuntu 18.04, you may encounter an GL-related error while building mujoco-py, open venv/lib/python3.7/site-packages/mujoco_py/gl/eglshim.c and comment line 5 #include <GL/gl.h> and line 7 #include <GL/glext.h>.

Virtual display on headless machines

On servers, you don’t have a monitor. Use this to get a virtual monitor for rendering and put DISPLAY=:1 in front of a command.

# Run the next line for Ubuntu
$ sudo apt-get install xserver-xorg libglu1-mesa-dev freeglut3-dev mesa-common-dev libxmu-dev libxi-dev

# Configure nvidia-x
$ sudo nvidia-xconfig -a --use-display-device=None --virtual=1280x1024

# Launch a virtual display
$ sudo /usr/bin/X :1 &

# Run a command with DISPLAY=:1
DISPLAY=:1 <command>

pybind11-dev not found

wget http://archive.ubuntu.com/ubuntu/pool/universe/p/pybind11/pybind11-dev_2.2.4-2_all.deb
sudo apt install ./pybind11-dev_2.2.4-2_all.deb

References

Citation

If you find this useful, please cite

@inproceedings{yamada2020mopa,
  title={Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments},
  author={Jun Yamada and Youngwoon Lee and Gautam Salhotra and Karl Pertsch and Max Pflueger and Gaurav S. Sukhatme and Joseph J. Lim and Peter Englert},
  booktitle={Conference on Robot Learning},
  year={2020}
}

Authors

Jun Yamada*, Youngwoon Lee*, Gautam Salhotra, Karl Pertsch, Max Pflueger, Gaurav S. Sukhatme, Joseph J. Lim, and Peter Englert at USC CLVR and USC RESL (*Equal contribution)

Owner
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
Learning and Reasoning for Artificial Intelligence, especially focused on perception and action. Led by Professor Joseph J. Lim @ USC
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022