Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

Overview

MediumVC

MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utterance i spoken by X). The Ŷi are considered as SSIF. To build SingleVC, we employ a novel data augment strategy: pitch-shifted and duration-remained(PSDR) to produce paired asymmetrical training data. Then, based on pre-trained SingleVC, MediumVC performs an asymmetrical reconstruction task(Ŷi → X̂i). Due to the asymmetrical reconstruction mode, MediumVC achieves more efficient feature decoupling and fusion. Experiments demonstrate MediumVC performs strong robustness for unseen speakers across multiple public datasets. Here is the official implementation of the paper, MediumVC.

The following are the overall model architecture.

Model architecture

For the audio samples, please refer to our demo page. The more converted speeches can be found in "Demo/ConvertedSpeeches/".

Envs

You can install the dependencies with

pip install -r requirements.txt

Speaker Encoder

Dvector is a robust speaker verification (SV) system pre-trained on VoxCeleb1 using GE2E loss, and it produces 256-dim speaker embedding. In our evaluation on multiple datasets(VCTK with 30000 pairs, Librispeech with 30000 pairs and VCC2020 with 10000 pairs), the equal error rates(EERs)and thresholds(THRs) are recorded in Table. Then Dvector with THRs is also employed to calculate SV accuracy(ACC) of pairs produced by MediumVC and other contrast methods for objective evaluation. The more details can access paper.

Dataset VCTK LibriSpeech VCC2020
EER(%)/THR 7.71/0.462 7.95/0.337 1.06/0.432

Vocoder

The HiFi-GAN vocoder is employed to convert log mel-spectrograms to waveforms. The model is trained on universal datasets with 13.93M parameters. Through our evaluation, it can synthesize 22.05 kHz high-fidelity speeches over 4.0 MOS, even in cross-language or noisy environments.

Infer

You can download the pretrained model, and then edit "Any2Any/infer/infer_config.yaml".Test Samples could be organized as "wav22050/$figure$/*.wav".

python Any2Any/infer/infer.py

Train from scratch

Preprocessing

The corpus should be organized as "VCTK22050/$figure$/*.wav", and then edit the config file "Any2Any/pre_feature/preprocess_config.yaml".The output "spk_emb_mel_label.pkl" will be used for training.

python Any2Any/pre_feature/figure_spkemb_mel.py

Training

Please edit the paths of pretrained hifi-model,wav2mel,dvector,SingleVC in config file "Any2Any/config.yaml" at first.

python Any2Any/solver.py
Owner
谷下雨
美中不足
谷下雨
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022