Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Overview

Parameterized AP Loss

By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai

This is the official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Introduction

TL; DR.

Parameterized AP Loss aims to better align the network training and evaluation in object detection. It builds a unified formula for classification and localization tasks via parameterized functions, where the optimal parameters are searched automatically.

PAPLoss-intro

Introduction.

  • In evaluation of object detectors, Average Precision (AP) captures the performance of localization and classification sub-tasks simultaneously.

  • In training, due to the non-differentiable nature of the AP metric, previous methods adopt separate differentiable losses for the two sub-tasks. Such a mis-alignment issue may well lead to performance degradation.

  • Some existing works seek to design surrogate losses for the AP metric manually, which requires expertise and may still be sub-optimal.

  • In this paper, we propose Parameterized AP Loss, where parameterized functions are introduced to substitute the non-differentiable components in the AP calculation. Different AP approximations are thus represented by a family of parameterized functions in a unified formula. Automatic parameter search algorithm is then employed to search for the optimal parameters. Extensive experiments on the COCO benchmark demonstrate that the proposed Parameterized AP Loss consistently outperforms existing handcrafted losses.

PAPLoss-overview

Main Results with RetinaNet

Model Loss AP config
R50+FPN Focal Loss + L1 37.5 config
R50+FPN Focal Loss + GIoU 39.2 config
R50+FPN AP Loss + L1 35.4 config
R50+FPN aLRP Loss 39.0 config
R50+FPN Parameterized AP Loss 40.5 search config
training config

Main Results with Faster-RCNN

Model Loss AP config
R50+FPN Cross Entropy + L1 39.0 config
R50+FPN Cross Entropy + GIoU 39.1 config
R50+FPN aLRP Loss 40.7 config
R50+FPN AutoLoss-Zero 39.3 -
R50+FPN CSE-AutoLoss-A 40.4 -
R50+FPN Parameterized AP Loss 42.0 search config
training config

Installation

Our implementation is based on MMDetection and aLRPLoss, thanks for their codes!

Requirements

  • Linux or macOS
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+
  • GCC 5+
  • mmcv

Recommended configuration: Python 3.7, PyTorch 1.7, CUDA 10.1.

Install mmdetection with Parameterized AP Loss

a. create a conda virtual environment and activate it.

conda create -n paploss python=3.7 -y
conda activate paploss

b. install pytorch and torchvision following official instructions.

conda install pytorch=1.7.0 torchvision=0.8.0 cudatoolkit=10.1 -c pytorch

c. intall mmcv following official instruction. We recommend installing the pre-built mmcv-full. For example, if your CUDA version is 10.1 and pytorch version is 1.7.0, you could run:

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.html

d. clone the repository.

git clone https://github.com/fundamentalvision/Parameterized-AP-Loss.git
cd Parameterized-AP-Loss

e. Install build requirements and then install mmdetection with Parameterized AP Loss. (We install our forked version of pycocotools via the github repo instead of pypi for better compatibility with our repo.)

pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

Usage

Dataset preparation

Please follow the official guide of mmdetection to organize the datasets. Note that we split the original training set into search training and validation sets with this split tool. The recommended data structure is as follows:

Parameterized-AP-Loss
├── mmdet
├── tools
├── configs
└── data
    └── coco
        ├── annotations
        |   ├── search_train2017.json
        |   ├── search_val2017.json
        |   ├── instances_train2017.json
        |   └── instances_val2017.json
        ├── train2017
        ├── val2017
        └── test2017

Searching for Parameterized AP Loss

The search command format is

./tools/dist_search.sh {CONFIG_NAME} {NUM_GPUS}

For example, the command for searching for RetinaNet with 8 GPUs is as follows:

./tools/dist_search.sh ./search_configs/cfg_search_retina.py 8

Training models with the provided parameters

After searching, copy the optimal parameters into the provided training config. We have also provided a set of parameters searched by us.

The re-training command format is

./tools/dist_train.sh {CONFIG_NAME} {NUM_GPUS}

For example, the command for training RetinaNet with 8 GPUs is as follows:

./tools/dist_train.sh ./configs/paploss/paploss_retinanet_r50_fpn.py 8

License

This project is released under the Apache 2.0 license.

Citing Parameterzied AP Loss

If you find Parameterized AP Loss useful in your research, please consider citing:

@inproceedings{tao2021searching,
  title={Searching Parameterized AP Loss for Object Detection},
  author={Tao, Chenxin and Li, Zizhang and Zhu, Xizhou and Huang, Gao and Liu, Yong and Dai, Jifeng},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022