codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Related tags

Deep LearningSPUDRFs
Overview

Self-paced Deep Regression Forests with Consideration on Ranking Fairness

This is official codes for paper Self-paced Deep Regression Forests with Consideration on Ranking Fairness. In this paper, we proposes a new self-paced paradigm for deep discriminative model, which distinguishes noisy and underrepresented examples according to the output likelihood and entropy associated with each example, and we tackle the fundamental ranking problem in SPL from a new perspective: Fairness.

Why should we consider the fairness of self-paced learning?

We find that SPL focuses on easy samples at early pace and the underrepresented ones are always ranked at the end of the whole sequence. This phenomenon demonstrates the SPL has a potential sorting fairness issue. However, SPUDRFs considers sample uncertainty when ranking samples, thus making underrepresented samples be selected at early pace.

Tasks and Performances

Age Estimation on MORPH II Dataset

The gradual learning process of SP-DRFs and SPUDRFs. Left: The typical worst cases at each iteration. Right: The MAEs of SP-DRFs and SPUDRFs at each pace descend gradually. Compared with SP-DRFs, the SPUDRFs show its superiority of taking predictive uncertainty into consideration.

Gaze Estimation on MPII Dataset

The similar phenomena can be observed on MPII dataset.

Head Pose Estimation on BIWI Dataset

For visualization, we plot the leaf node distribution of SP-DRFs and SPUDRFs in gradual learning process. The means of leaf nodes of SP-DRFs gather in a small range, incurring seriously biased solutions, while that of SPUDRFs distribute widely, leading to much better MAE performance.

Fairness Evaluation

We use FRIA, proposed in our paper, as fairness metric. FAIR is defined as following form.

The following table shows the FAIR of different methods on different datasets. SPUDRFs achieve the best performance on all datasets.
Dataset MORPH FGNET BIWI BU-3DFE MPII
DRFs 0.46 0.42 0.46 0.740 0.67
SP-DRFs 0.44 0.37 0.43 0.72 0.67
SPUDRFs 0.48 0.42 0.70 0.76 0.69

How to train your SPUDRFs

Pre-trained models and Dataset

We use pre-trained models for our training. You can download VGGFace from here and VGG IMDB-WIKI from here. The datasets used in our experiment are in following table. We use MTCNN to detect and align face. For BIWI, we use depth images. For MPII, we use normalized left eye and right eye patch as input, and details about normalization can be found here.

Task Dataset
Age Estimation MOPRH and FG-NET
Head Estimation BIWI and BU-3DFE
Gaze Estimation MPII

Environment setup

All codes are based on Pytorch, before you run this repo, please make sure that you have a pytorch envirment. You can install them using following command.

pip install -r requirements.txt

Train SPUDRFs

Code descritption:

Here is the description of the main codes.

step.py:         train SPUDRFs from scratch  
train.py:        complete one pace training for a given train set
predict.py:      complete a test for a given test set
picksamples.py:  select samples for next pace   

Train your SPUDRFs from scratch:

You should download this repo, and prepare your datasets and pre-trained models, then just run following command to train your SPUDRFs from scratch.

  • Clone this repo:
git clone https://github.com/learninginvision/SPUDRFs.git  
cd SPUDFRs  
  • Set config.yml
lr: 0.00002
max_step: 80000
batchsize: 32

total_pace: 10
pace_percent: [0.5, 0.0556, 0.0556, 0.0556, 0.0556, 0.0556, 0.0556, 0.0556, 0.0556, 0.0552]
alpha: 2
threshold: -3.0
ent_pick_per: 0
capped: False
  • Train from scratch
python step.py

Acknowledgments

This code is inspired by caffe-DRFs.

Owner
Learning in Vision
Understanding and learning in computer vision.
Learning in Vision
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022