HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

Related tags

Deep LearningHODEmu
Overview

HODEmu

HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of cosmological parameters Omega_m, Omega_b, sigma_8, h_0 and redshift.

The Emulator is trained on satellite abundance of Magneticum simulations Box1a/mr spanning 15 cosmologies (see Table 1 of the paper) and on all satellites with a stellar mass cut of M* > 2 1011 M. Use Eq. 3 to rescale it to a stelalr mass cut of 1010M.

The Emulator has been trained with sklearn GPR, however the class implemented in hod_emu.py is a stand-alone porting and does not need sklearn to be installed.

satellite average abundance for two Magneticum Box1a/mr simulations, from Ragagnin et al. 2021

TOC:

Install

You can either )1) download the file hod_emu.py and _hod_emu_sklearn_gpr_serialized.py or (2) install it with python -mpip install git+https://github.com/aragagnin/HODEmu. The package depends only on scipy. The file hod_emu.py can be executed from your command line interface by running ./hod_emu.py in the installation folder.

Check this ipython-notebook for a guided usage on a python code: https://github.com/aragagnin/HODEmu/blob/main/examples.ipynb

Example 1: Obtain normalisation, logslope and gaussian scatter of Ns-M relation

The following command will output, respectively, normalisation A, log-slope \beta, log-scatter \sigma, and the respective standard deviation from the emulator. Since the emulator has been trained on the residual of the power-law dependency in Eq. 6, the errors are respectively, the standard deviation on log-A, on log-beta, and on log-sigma. Note that --delta can be only 200c or vir as the paper only emulates these two overdensities.

 ./hod_emu.py  200c  .27  .04   0.8  0.7   0.0 #overdensity omega_m omega_b sigma8 h0 redshift

Here below we will use hod_emyu as python library to plot the Ns-M relation. First we use hod_emu.get_emulator_m200c() to obtain an instance of the Emulator class trianed on Delta_200c, and the function emu.predict_A_beta_sigma(input) to retrieve A,\beta and \sigma.

Note that input can be evaluated on a number N of data points (in this example only one), thus being is a N x 5 numpy array and the return value is a N x 3 numpy array. The parameter emulator_std=True will also return a N x 3 numpy array with the corresponding emulator standard deviations.

import hod_emu
Om0, Ob0, s8, h0, z = 0.3, 0.04, 0.8, 0.7, 0.9

input = [[Om0, Ob0, s8, h0, 1./(1.+z)]] #the input must be a 2d array because you can feed an array of data points

emu = hod_emu.get_emulator_m200c() # use get_emulator_mvir to obtain the emulator within Delta_vir

A, beta, sigma  =  emu.predict_A_beta_sigma(input).T #the function outputs a 1x3 matrix 

masses = np.logspace(14.5,15.5,20)
Ns = A*(masses/5e14)**beta 

plt.plot(masses,Ns)
plt.fill_between(masses, Ns*(1.-sigma), Ns*(1.+sigma),alpha=0.2)
plt.xlabel(r'$M_{\rm{halo}}$')
plt.ylabel(r'$N_s$')
plt.title(r'$M_\bigstar>2\cdot10^{11}M_\odot \ \ \ \tt{ and }  \ \ \ \ \  r
   )
plt.xscale('log')
plt.yscale('log')

params_tuple, stds_tuple  =  emu.predict_A_beta_sigma(input, emulator_std=True) #here we also asks for Emulator std deviation

A, beta, sigma = params_tuple.T
error_logA, error_logbeta, error_logsigma = stds_tuple.T

print('A: %.3e, log-std A: %.3e'%(A[0], error_logA[0]))
print('B: %.3e, log-std beta: %.3e'%(beta[0], error_logbeta[0]))
print('sigma: %.3e, log-std sigma: %.3e'%(sigma[0], error_logsigma[0]))

Will show the following figure:

Ns-M relation produced by HODEmu

And print the following output:

A: 1.933e+00, log-std A: 1.242e-01
B: 1.002e+00, log-std beta: 8.275e-02
sigma: 6.723e-02, log-std sigma: 2.128e-01

Example 2: Produce mock catalog of galaxies

In this example we use package hmf to produce a mock catalog of haloe masses. Note that the mock number of satellite is based on a gaussian distribution with a cut on negative value (see Eq. 5 of the paper), hence the function non_neg_normal_sample.

2\cdot10^{11}M_\odot \ \ \ \tt{ and } \ \ \ \ \ r
import hmf.helpers.sample
import scipy.stats

masses = hmf.helpers.sample.sample_mf(400,14.0,hmf_model="PS",Mmax=17,sort=True)[0]    
    
def non_neg_normal_sample(loc, scale,  max_iters=1000):
    "Given a numpy-array of loc and scale, return data from only-positive normal distribution."
    vals = scipy.stats.norm.rvs(loc = loc, scale=scale)
    mask_negative = vals<0.
    if(np.any(vals[mask_negative])):
        non_neg_normal_sample(loc[mask_negative], scale[mask_negative],  max_iters=1000)
    # after the recursion, we should have all positive numbers
    
    if(np.any(vals<0.)):
        raise Exception("non_neg_normal_sample function failed to provide  positive-normal")    
    return vals

A, beta, logscatter = emu.predict_A_beta_sigma( [Om0, Ob0, s8, h0, 1./(1.+z)])[0].T

Ns = A*(masses/5e14)**beta

modelmu = non_neg_normal_sample(loc = Ns, scale=logscatter*Ns)
modelpois = scipy.stats.poisson.rvs(modelmu)
modelmock = modelpois

plt.fill_between(masses, Ns *(1.-logscatter), Ns *(1.+logscatter), label='Ns +/- log scatter from Emu', color='black',alpha=0.5)
plt.scatter(masses, modelmock , label='Ns mock', color='orange')
plt.plot(masses, Ns , label='
    
      from Emu'
    , color='black')
plt.ylim([0.1,100.])
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$M_{\rm {halo}} [M_\odot]$')
plt.ylabel(r'$N_s$')
plt.title(r'$M_\bigstar>2\cdot10^{11}M_\odot \ \ \ \tt{ and }  \ \ \ \ \  r
    )

plt.legend();

Will show the following figure:

Mock catalog of halos and satellite abundance produced by HODEmu

Owner
Antonio Ragagnin
I cook math
Antonio Ragagnin
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022