Semi-Supervised Learning for Fine-Grained Classification

Overview

Semi-Supervised Learning for Fine-Grained Classification

This repo contains the code of:

  • A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification, Jong-Chyi Su, Zezhou Cheng, and Subhransu Maji, CVPR 2021. [paper, poster, slides]
  • Semi-Supervised Learning with Taxonomic Labels, Jong-Chyi Su and Subhransu Maji, BMVC 2021. [paper, slides]

Preparing Datasets and Splits

We used the following datasets in the paper:

In addition the repository contains a new Semi-iNat dataset corresponding to the FGVC8 semi-supervised challenge:

  • Semi-iNat: This is a new dataset for the Semi-iNat Challenge at FGVC8 workshop at CVPR 2021. Different from Semi-Aves, Semi-iNat has more species from different kingdoms, and does not include in or out-of-domain label. For more details please see the challenge website.

The splits of each of these datasets can be found under data/${dataset}/${split}.txt corresponding to:

  • l_train -- labeled in-domain data
  • u_train_in -- unlabeled in-domain data
  • u_train_out -- unlabeled out-of-domain data
  • u_train (combines u_train_in and u_train_out)
  • val -- validation set
  • l_train_val (combines l_train and val)
  • test -- test set

Each line in the text file has a filename and the corresponding class label.

Please download the datasets from the corresponding websites. For Semi-Aves, put the data under data/semi_aves. FFor Semi-Fungi and Semi-CUB, download the images and put them under data/semi_fungi/images and data/cub/images.

Note 1: For the experiments on Semi-Fungi reported in the paper, the images are resized to a maximum of 300px for each side.
Note 2: We reported the results of another split of Semi-Aves in the appendix (for cross-validation), but we do not release the labels because it will leak the labels for unlabeled data.
Note 3: We also provide the species names of Semi-Aves under data/semi_aves_species_names.txt, and the species names of Semi-Fungi. The names were not shared in the competetion.

Training and Evaluation (CVPR paper)

We provide the code for all the methods included in the paper, except for FixMatch and MoCo. This includes methods of supervised training, self-training, PL, and curriculum PL. This code is developed based on this PyTorch implementation.

For FixMatch, we used the official Tensorflow code and an unofficial PyTorch code to reproduce the results. For MoCo, we use this PyContrast implementation.

To train the model, use the following command:

CUDA_VISIBLE_DEVICES=0 python run_train.py --task ${task} --init ${init} --alg ${alg} --unlabel ${unlabel} --num_iter ${num_iter} --warmup ${warmup} --lr ${lr} --wd ${wd} --batch_size ${batch_size} --exp_dir ${exp_dir} --MoCo ${MoCo} --alpha ${alpha} --kd_T ${kd_T} --trainval

For example, to train a supervised model initialized from a inat pre-trained model on semi-aves dataset with in-domain unlabeled data only, you will use:

CUDA_VISIBLE_DEVICES=0 python run_train.py --task semi_aves --init inat --alg supervised --unlabel in --num_iter 10000 --lr 1e-3 --wd 1e-4 --exp_dir semi_aves_supervised_in --MoCo false --trainval

Note that for experiments of Semi-Aves and Semi-Fungi in the paper, we combined the training and val set for training (use args --trainval).
For all the hyper-parameters, please see the following shell scripts:

  • exp_sup.sh for supervised training
  • exp_PL.sh for pseudo-labeling
  • exp_CPL.sh for curriculum pseudo-labeling
  • exp_MoCo.sh for MoCo + supervised training
  • exp_distill.sh for self-training and MoCo + self-training

Training and Evaluation (BMVC paper)

In our BMVC paper, we added the hierarchical supervision of coarse labels on top of semi-supervised learning.

To train the model, use the following command:

CUDA_VISIBLE_DEVICES=0 python run_train_hierarchy.py --task ${task} --init ${init} --alg ${alg} --unlabel ${unlabel} --num_iter ${num_iter} --warmup ${warmup} --lr ${lr} --wd ${wd} --batch_size ${batch_size} --exp_dir ${exp_dir} --MoCo ${MoCo} --alpha ${alpha} --kd_T ${kd_T} --level ${level}

The following are the arguments different from the above:

  • ${level}: choose from {genus, kingdom, phylum, class, order, family, species}
  • ${alg}: choose from {hierarchy, PL_hierarchy, distill_hierarchy}

For the settings and hyper-parameters, please see exp_hierarchy.sh.

Pre-Trained Models

We provide supervised training models, MoCo pre-trained models, as well as MoCo + supervised training models, for both Semi-Aves and Semi-Fungi datasets. Here are the links to download the model:

http://vis-www.cs.umass.edu/semi-inat-2021/ssl_evaluation/models/${method}/${dataset}_${initialization}_${unlabel}.pth.tar

  • ${method}: choose from {supervised, MoCo_init, MoCo_supervised}
  • ${dataset}: choose from {semi_aves, semi_fungi}
  • ${initialization}: choose from {scratch, imagenet, inat}
  • ${unlabel}: choose from {in, inout}

You need these models for self-training mothods. For example, the teacher model is initialized from model/supervised for self-training. For MoCo + self-training, the teacher model is initialized from model/MoCo_supervised, and the student model is initialized from model/MoCo_init.

We also provide the pre-trained ResNet-50 model of iNaturalist-18. This model was trained using this github code.

Related Challenges

Citation

@inproceedings{su2021realistic,
  author    = {Jong{-}Chyi Su and Zezhou Cheng and Subhransu Maji},
  title     = {A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2021}
}

@inproceedings{su2021taxonomic,
  author    = {Jong{-}Chyi Su and Subhransu Maji},
  title     = {Semi-Supervised Learning with Taxonomic Labels},
  booktitle = {British Machine Vision Conference (BMVC)},
  year      = {2021}
}

@article{su2021semi_iNat,
      title={The Semi-Supervised iNaturalist Challenge at the FGVC8 Workshop}, 
      author={Jong-Chyi Su and Subhransu Maji},
      year={2021},
      journal={arXiv preprint arXiv:2106.01364}
}

@article{su2021semi_aves,
      title={The Semi-Supervised iNaturalist-Aves Challenge at FGVC7 Workshop}, 
      author={Jong-Chyi Su and Subhransu Maji},
      year={2021},
      journal={arXiv preprint arXiv:2103.06937}
}
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022