Semi-Supervised Learning for Fine-Grained Classification

Overview

Semi-Supervised Learning for Fine-Grained Classification

This repo contains the code of:

  • A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification, Jong-Chyi Su, Zezhou Cheng, and Subhransu Maji, CVPR 2021. [paper, poster, slides]
  • Semi-Supervised Learning with Taxonomic Labels, Jong-Chyi Su and Subhransu Maji, BMVC 2021. [paper, slides]

Preparing Datasets and Splits

We used the following datasets in the paper:

In addition the repository contains a new Semi-iNat dataset corresponding to the FGVC8 semi-supervised challenge:

  • Semi-iNat: This is a new dataset for the Semi-iNat Challenge at FGVC8 workshop at CVPR 2021. Different from Semi-Aves, Semi-iNat has more species from different kingdoms, and does not include in or out-of-domain label. For more details please see the challenge website.

The splits of each of these datasets can be found under data/${dataset}/${split}.txt corresponding to:

  • l_train -- labeled in-domain data
  • u_train_in -- unlabeled in-domain data
  • u_train_out -- unlabeled out-of-domain data
  • u_train (combines u_train_in and u_train_out)
  • val -- validation set
  • l_train_val (combines l_train and val)
  • test -- test set

Each line in the text file has a filename and the corresponding class label.

Please download the datasets from the corresponding websites. For Semi-Aves, put the data under data/semi_aves. FFor Semi-Fungi and Semi-CUB, download the images and put them under data/semi_fungi/images and data/cub/images.

Note 1: For the experiments on Semi-Fungi reported in the paper, the images are resized to a maximum of 300px for each side.
Note 2: We reported the results of another split of Semi-Aves in the appendix (for cross-validation), but we do not release the labels because it will leak the labels for unlabeled data.
Note 3: We also provide the species names of Semi-Aves under data/semi_aves_species_names.txt, and the species names of Semi-Fungi. The names were not shared in the competetion.

Training and Evaluation (CVPR paper)

We provide the code for all the methods included in the paper, except for FixMatch and MoCo. This includes methods of supervised training, self-training, PL, and curriculum PL. This code is developed based on this PyTorch implementation.

For FixMatch, we used the official Tensorflow code and an unofficial PyTorch code to reproduce the results. For MoCo, we use this PyContrast implementation.

To train the model, use the following command:

CUDA_VISIBLE_DEVICES=0 python run_train.py --task ${task} --init ${init} --alg ${alg} --unlabel ${unlabel} --num_iter ${num_iter} --warmup ${warmup} --lr ${lr} --wd ${wd} --batch_size ${batch_size} --exp_dir ${exp_dir} --MoCo ${MoCo} --alpha ${alpha} --kd_T ${kd_T} --trainval

For example, to train a supervised model initialized from a inat pre-trained model on semi-aves dataset with in-domain unlabeled data only, you will use:

CUDA_VISIBLE_DEVICES=0 python run_train.py --task semi_aves --init inat --alg supervised --unlabel in --num_iter 10000 --lr 1e-3 --wd 1e-4 --exp_dir semi_aves_supervised_in --MoCo false --trainval

Note that for experiments of Semi-Aves and Semi-Fungi in the paper, we combined the training and val set for training (use args --trainval).
For all the hyper-parameters, please see the following shell scripts:

  • exp_sup.sh for supervised training
  • exp_PL.sh for pseudo-labeling
  • exp_CPL.sh for curriculum pseudo-labeling
  • exp_MoCo.sh for MoCo + supervised training
  • exp_distill.sh for self-training and MoCo + self-training

Training and Evaluation (BMVC paper)

In our BMVC paper, we added the hierarchical supervision of coarse labels on top of semi-supervised learning.

To train the model, use the following command:

CUDA_VISIBLE_DEVICES=0 python run_train_hierarchy.py --task ${task} --init ${init} --alg ${alg} --unlabel ${unlabel} --num_iter ${num_iter} --warmup ${warmup} --lr ${lr} --wd ${wd} --batch_size ${batch_size} --exp_dir ${exp_dir} --MoCo ${MoCo} --alpha ${alpha} --kd_T ${kd_T} --level ${level}

The following are the arguments different from the above:

  • ${level}: choose from {genus, kingdom, phylum, class, order, family, species}
  • ${alg}: choose from {hierarchy, PL_hierarchy, distill_hierarchy}

For the settings and hyper-parameters, please see exp_hierarchy.sh.

Pre-Trained Models

We provide supervised training models, MoCo pre-trained models, as well as MoCo + supervised training models, for both Semi-Aves and Semi-Fungi datasets. Here are the links to download the model:

http://vis-www.cs.umass.edu/semi-inat-2021/ssl_evaluation/models/${method}/${dataset}_${initialization}_${unlabel}.pth.tar

  • ${method}: choose from {supervised, MoCo_init, MoCo_supervised}
  • ${dataset}: choose from {semi_aves, semi_fungi}
  • ${initialization}: choose from {scratch, imagenet, inat}
  • ${unlabel}: choose from {in, inout}

You need these models for self-training mothods. For example, the teacher model is initialized from model/supervised for self-training. For MoCo + self-training, the teacher model is initialized from model/MoCo_supervised, and the student model is initialized from model/MoCo_init.

We also provide the pre-trained ResNet-50 model of iNaturalist-18. This model was trained using this github code.

Related Challenges

Citation

@inproceedings{su2021realistic,
  author    = {Jong{-}Chyi Su and Zezhou Cheng and Subhransu Maji},
  title     = {A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2021}
}

@inproceedings{su2021taxonomic,
  author    = {Jong{-}Chyi Su and Subhransu Maji},
  title     = {Semi-Supervised Learning with Taxonomic Labels},
  booktitle = {British Machine Vision Conference (BMVC)},
  year      = {2021}
}

@article{su2021semi_iNat,
      title={The Semi-Supervised iNaturalist Challenge at the FGVC8 Workshop}, 
      author={Jong-Chyi Su and Subhransu Maji},
      year={2021},
      journal={arXiv preprint arXiv:2106.01364}
}

@article{su2021semi_aves,
      title={The Semi-Supervised iNaturalist-Aves Challenge at FGVC7 Workshop}, 
      author={Jong-Chyi Su and Subhransu Maji},
      year={2021},
      journal={arXiv preprint arXiv:2103.06937}
}
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023