Semi-Supervised Learning for Fine-Grained Classification

Overview

Semi-Supervised Learning for Fine-Grained Classification

This repo contains the code of:

  • A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification, Jong-Chyi Su, Zezhou Cheng, and Subhransu Maji, CVPR 2021. [paper, poster, slides]
  • Semi-Supervised Learning with Taxonomic Labels, Jong-Chyi Su and Subhransu Maji, BMVC 2021. [paper, slides]

Preparing Datasets and Splits

We used the following datasets in the paper:

In addition the repository contains a new Semi-iNat dataset corresponding to the FGVC8 semi-supervised challenge:

  • Semi-iNat: This is a new dataset for the Semi-iNat Challenge at FGVC8 workshop at CVPR 2021. Different from Semi-Aves, Semi-iNat has more species from different kingdoms, and does not include in or out-of-domain label. For more details please see the challenge website.

The splits of each of these datasets can be found under data/${dataset}/${split}.txt corresponding to:

  • l_train -- labeled in-domain data
  • u_train_in -- unlabeled in-domain data
  • u_train_out -- unlabeled out-of-domain data
  • u_train (combines u_train_in and u_train_out)
  • val -- validation set
  • l_train_val (combines l_train and val)
  • test -- test set

Each line in the text file has a filename and the corresponding class label.

Please download the datasets from the corresponding websites. For Semi-Aves, put the data under data/semi_aves. FFor Semi-Fungi and Semi-CUB, download the images and put them under data/semi_fungi/images and data/cub/images.

Note 1: For the experiments on Semi-Fungi reported in the paper, the images are resized to a maximum of 300px for each side.
Note 2: We reported the results of another split of Semi-Aves in the appendix (for cross-validation), but we do not release the labels because it will leak the labels for unlabeled data.
Note 3: We also provide the species names of Semi-Aves under data/semi_aves_species_names.txt, and the species names of Semi-Fungi. The names were not shared in the competetion.

Training and Evaluation (CVPR paper)

We provide the code for all the methods included in the paper, except for FixMatch and MoCo. This includes methods of supervised training, self-training, PL, and curriculum PL. This code is developed based on this PyTorch implementation.

For FixMatch, we used the official Tensorflow code and an unofficial PyTorch code to reproduce the results. For MoCo, we use this PyContrast implementation.

To train the model, use the following command:

CUDA_VISIBLE_DEVICES=0 python run_train.py --task ${task} --init ${init} --alg ${alg} --unlabel ${unlabel} --num_iter ${num_iter} --warmup ${warmup} --lr ${lr} --wd ${wd} --batch_size ${batch_size} --exp_dir ${exp_dir} --MoCo ${MoCo} --alpha ${alpha} --kd_T ${kd_T} --trainval

For example, to train a supervised model initialized from a inat pre-trained model on semi-aves dataset with in-domain unlabeled data only, you will use:

CUDA_VISIBLE_DEVICES=0 python run_train.py --task semi_aves --init inat --alg supervised --unlabel in --num_iter 10000 --lr 1e-3 --wd 1e-4 --exp_dir semi_aves_supervised_in --MoCo false --trainval

Note that for experiments of Semi-Aves and Semi-Fungi in the paper, we combined the training and val set for training (use args --trainval).
For all the hyper-parameters, please see the following shell scripts:

  • exp_sup.sh for supervised training
  • exp_PL.sh for pseudo-labeling
  • exp_CPL.sh for curriculum pseudo-labeling
  • exp_MoCo.sh for MoCo + supervised training
  • exp_distill.sh for self-training and MoCo + self-training

Training and Evaluation (BMVC paper)

In our BMVC paper, we added the hierarchical supervision of coarse labels on top of semi-supervised learning.

To train the model, use the following command:

CUDA_VISIBLE_DEVICES=0 python run_train_hierarchy.py --task ${task} --init ${init} --alg ${alg} --unlabel ${unlabel} --num_iter ${num_iter} --warmup ${warmup} --lr ${lr} --wd ${wd} --batch_size ${batch_size} --exp_dir ${exp_dir} --MoCo ${MoCo} --alpha ${alpha} --kd_T ${kd_T} --level ${level}

The following are the arguments different from the above:

  • ${level}: choose from {genus, kingdom, phylum, class, order, family, species}
  • ${alg}: choose from {hierarchy, PL_hierarchy, distill_hierarchy}

For the settings and hyper-parameters, please see exp_hierarchy.sh.

Pre-Trained Models

We provide supervised training models, MoCo pre-trained models, as well as MoCo + supervised training models, for both Semi-Aves and Semi-Fungi datasets. Here are the links to download the model:

http://vis-www.cs.umass.edu/semi-inat-2021/ssl_evaluation/models/${method}/${dataset}_${initialization}_${unlabel}.pth.tar

  • ${method}: choose from {supervised, MoCo_init, MoCo_supervised}
  • ${dataset}: choose from {semi_aves, semi_fungi}
  • ${initialization}: choose from {scratch, imagenet, inat}
  • ${unlabel}: choose from {in, inout}

You need these models for self-training mothods. For example, the teacher model is initialized from model/supervised for self-training. For MoCo + self-training, the teacher model is initialized from model/MoCo_supervised, and the student model is initialized from model/MoCo_init.

We also provide the pre-trained ResNet-50 model of iNaturalist-18. This model was trained using this github code.

Related Challenges

Citation

@inproceedings{su2021realistic,
  author    = {Jong{-}Chyi Su and Zezhou Cheng and Subhransu Maji},
  title     = {A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2021}
}

@inproceedings{su2021taxonomic,
  author    = {Jong{-}Chyi Su and Subhransu Maji},
  title     = {Semi-Supervised Learning with Taxonomic Labels},
  booktitle = {British Machine Vision Conference (BMVC)},
  year      = {2021}
}

@article{su2021semi_iNat,
      title={The Semi-Supervised iNaturalist Challenge at the FGVC8 Workshop}, 
      author={Jong-Chyi Su and Subhransu Maji},
      year={2021},
      journal={arXiv preprint arXiv:2106.01364}
}

@article{su2021semi_aves,
      title={The Semi-Supervised iNaturalist-Aves Challenge at FGVC7 Workshop}, 
      author={Jong-Chyi Su and Subhransu Maji},
      year={2021},
      journal={arXiv preprint arXiv:2103.06937}
}
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022