Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Related tags

Deep LearningSTRL
Overview

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds

This is the official code implementation for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021) paper

Checklist

Self-supervised Pre-training Framework

  • BYOL
  • SimCLR

Downstream Tasks

  • Shape Classification
  • Semantic Segmentation
  • Indoor Object Detection
  • Outdoor Object Detection

Installation

The code was tested with the following environment: Ubuntu 18.04, python 3.7, pytorch 1.7.1, torchvision 0.8.2 and CUDA 11.1.

For self-supervised pre-training, run the following command:

git clone https://github.com/yichen928/STRL.git
cd STRL
pip install -r requirements.txt

For downstream tasks, please refer to the Downstream Tasks section.

Datasets

Please download the used dataset with the following links:

Make sure to put the files in the following structure:

|-- ROOT
|	|-- BYOL
|		|-- data
|			|-- modelnet40_normal_resampled_cache
|			|-- shapenet57448xyzonly.npz
|			|-- scannet
|				|-- scannet_frames_25k

Pre-training

BYOL framework

Please run the following command:

python BYOL/train.py

You need to edit the config file BYOL/config/config.yaml to switch different backbone architectures (currently including BYOL-pointnet-cls, BYOL-dgcnn-cls, BYOL-dgcnn-semseg, BYOL-votenet-detection).

Pre-trained Models

You can find the checkpoints of the pre-training and downstream tasks in our Google Drive.

Linear Evaluation

For PointNet or DGCNN classification backbones, you may evaluate the learnt representation with linear SVM classifier by running the following command:

For PointNet:

python BYOL/evaluate_pointnet.py -w /path/to/your/pre-trained/checkpoints

For DGCNN:

python BYOL/evaluate_dgcnn.py -w /path/to/your/pre-trained/checkpoints

Downstream Tasks

Checkpoints Transformation

You can transform the pre-trained checkpoints to different downstream tasks by running:

For VoteNet:

python BYOL/transform_ckpt_votenet.py --input_path /path/to/your/pre-trained/checkpoints --output_path /path/to/the/transformed/checkpoints

For other backbones:

python BYOL/transform_ckpt.py --input_path /path/to/your/pre-trained/checkpoints --output_path /path/to/the/transformed/checkpoints

Fine-tuning and Evaluation for Downstream Tasks

For the fine-tuning and evaluation of downstream tasks, please refer to other corresponding repos. We sincerely thank all these authors for their nice work!

Citation

If you found our paper or code useful for your research, please cite the following paper:

@article{huang2021spatio,
  title={Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds},
  author={Huang, Siyuan and Xie, Yichen and Zhu, Song-Chun and Zhu, Yixin},
  journal={arXiv preprint arXiv:2109.00179},
  year={2021}
}
Owner
Hesper
Hesper
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022