Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Overview

logo

Inkstone simulates the electromagnetic properties of 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, vertical-cavity or photonic-crystal surface-emitting lasers (VCSEL, PCSEL), (patterned) solar cells, nano-antennas, and more.

Internally, Inkstone implements rigorous coupled-wave analysis (RCWA), a. k. a. Fourier Modal Method (FMM).

Inkstone can calculate:

  • the reflection, transmission, and absorption of the structure
  • the total and by-order power fluxes of the propagating and the evanescent waves in each layer
  • electric and magnetic field amplitudes at any locations in the structure,
  • band-structures based on the determinant of the scattering matrix of the structure.

Features of Inkstone:

  • It supports efficient and flexible parameter-scanning. You can change part of your structure such as the shapes and sizes of some patterns, or some material parameters. Inkstone only recalculates the modified parts and produces the final results efficiently.
  • It allows both tensorial permittivities and tensorial permeabilities, such as in anisotropic, magneto-optical, or gyromagnetic materials.
  • It can calculate the determinant of the scattering matrix on the complex frequency plane.
  • Pre-defined shapes of patterns can be used, including rectangular, parallelogram, disk, ellipse, 1D, and polygons. Closed-form Fourier transforms and corrections for Gibbs phenomena are implemented.
  • It is fully 3D.
  • It is written in pure python, with heavy-lifting done in numpy and scipy.

Quick Start

Installation:

$ pip install inkstone

Or,

$ git clone git://github.com/alexysong/inkstone
$ pip install .

Usage

The examples folder contains various self-explaining examples to get you started.

Dependencies

  • python 3.6+
  • numpy
  • scipy

Units, conventions, and definitions

Unit system

We adopt a natural unit system, where vacuum permittivity, permeability, and light speed are $\varepsilon_0=\mu_0=c_0=1$.

Sign convention

Sign conventions in electromagnetic waves:

$$e^{i(kx-\omega t)}$$

where $k$ is the wavevector, $x$ is spatial location, $\omega$ is frequency, $t$ is time.

By this convention, a permittivity of $\varepsilon_r + i\varepsilon_i$ with $\varepsilon_i>0$ means material loss, and $\varepsilon_i<0$ means material gain.

Coordinates and incident angles

drawing

(Inkstone, Incident $\bm{k}$ on stacked periodic nano electromagnetic structures.)

Citing

If you find Inkstone useful for your research, we would apprecite you citing our paper. For your convenience, you can use the following BibTex entry:

@article{song2018broadband,
  title={Broadband Control of Topological Nodes in Electromagnetic Fields},
  author={Song, Alex Y and Catrysse, Peter B and Fan, Shanhui},
  journal={Physical review letters},
  volume={120},
  number={19},
  pages={193903},
  year={2018},
  publisher={American Physical Society}
}
You might also like...
Code for
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

 Layered Neural Atlases for Consistent Video Editing
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Comments
  • Unable to verify Fresnel equations

    Unable to verify Fresnel equations

    Thank you for your transparent and usable Python port of S4.

    To verify that the code works correctly, I attempted to reproduce the Fresnel equations using a simple two layer model -- the first layer with n=1, and the second with n=1.5. I have been unable to get this to work in Inkstone, but I did get it to work with an equivalent code for Phoebe-P S4 . Attached are the codes I used for both Inkstone, fresnel_inkstone_te.py (which doesn't work); and S4, Fresnel_S4_TE.py (working).

    In inkstone, when I use angle = np.linspace(0, 90, 91) , I get the error: /inkstone/params.py:525: RuntimeWarning: Vacuum propagation constant 0 encountered. Possibly Wood's anomaly. warn("Vacuum propagation constant 0 encountered. Possibly Wood's anomaly.", RuntimeWarning)

    When I use angle = np.linspace(1, 90, 90) , I get the error: Traceback (most recent call last): File "fresnel_inkstone_te.py", line 71, in glapf, glapb = s.GetPowerFlux('gla') File "/inkstone/simulator.py", line 1204, in GetPowerFlux self.solve() File "/inkstone/simulator.py", line 890, in solve self._calc_sm() File "/inkstone/simulator.py", line 704, in _calc_sm s = next(ll[-1] for ll in self.csms if ll[-1][1] == n_layers-2) StopIteration

    If between the "air" air and "gla" glass layers, I add an intermediate layer: s.AddLayer(name='gla-int', thickness=1, material_background='glass')

    and still keep angle = np.linspace(1, 90, 90) then I get the error

    /.local/lib/python3.9/site-packages/inkstone/layer.py:545: RuntimeWarning: divide by zero encountered in divide vh = -1j * p @ v / w[:, None, :] /.local/lib/python3.9/site-packages/inkstone/layer.py:545: RuntimeWarning: invalid value encountered in divide vh = -1j * p @ v / w[:, None, :] Traceback (most recent call last): File "/inkstone/Fresnel_Inkstone/fresnel_inkstone_te.py", line 72, in glapf, glapb = s.GetPowerFlux('gla') File "/.local/lib/python3.9/site-packages/inkstone/simulator.py", line 1204, in GetPowerFlux self.solve() File "/.local/lib/python3.9/site-packages/inkstone/simulator.py", line 890, in solve self._calc_sm() File "/.local/lib/python3.9/site-packages/inkstone/simulator.py", line 682, in _calc_sm ll[ilm].solve() File "/.local/lib/python3.9/site-packages/inkstone/layer.py", line 702, in solve self._calc_im() File "/.local/lib/python3.9/site-packages/inkstone/layer.py", line 652, in _calc_im al0, bl0 = im(self.phil, self.psil, self.pr.phi0, self.pr.psi0, self._phil_is_idt) File "/.local/lib/python3.9/site-packages/inkstone/im.py", line 36, in im term2 = sla.solve(psi1, psi2) File "/.local/lib/python3.9/site-packages/scipy/linalg/_basic.py", line 140, in solve a1 = atleast_2d(_asarray_validated(a, check_finite=check_finite)) File "/.local/lib/python3.9/site-packages/scipy/_lib/_util.py", line 287, in _asarray_validated a = toarray(a) File "/.local/lib/python3.9/site-packages/numpy/lib/function_base.py", line 627, in asarray_chkfinite raise ValueError( ValueError: array must not contain infs or NaNs

    opened by matt8s 0
  • IndexError when calling

    IndexError when calling "ReconstructLayer"

    Hi,

    I'm trying to visualize the epsilon profile of the patterned layer named "slab" in the example file "phc_slab_circ_hole_spectrum.py", using ReconstructLayer (as defined on line 309 of simulator.py).

    I'm not entirely sure about the correct usage of ReconstructLayer but I'm just doing: s.ReconstructLayer('slab', 100, 100) or s.ReconstructLayer('slab') (since nx and ny both seem to default to 101). In both cases, I get the error:

    Traceback (most recent call last):
      File "phc_slab_circ_hole_spectrum.py", line 32, in <module>
        s.ReconstructLayer('slab')
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/inkstone/simulator.py", line 337, in ReconstructLayer
        result = self.layers[name].reconstruct(nx, ny)
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/inkstone/layer.py", line 395, in reconstruct
        for em in [fft.ifftshift(self.epsi_fs, axes=(0, 1)), fft.ifftshift(self.epsi_inv_fs, axes=(0, 1)), fft.ifftshift(self.mu_fs, axes=(0, 1)), fft.ifftshift(self.mu_inv_fs, axes=(0, 1))]]
      File "<__array_function__ internals>", line 6, in ifftshift
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/numpy/fft/helper.py", line 121, in ifftshift
        shift = [-(x.shape[ax] // 2) for ax in axes]
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/numpy/fft/helper.py", line 121, in <listcomp>
        shift = [-(x.shape[ax] // 2) for ax in axes]
    IndexError: tuple index out of range
    

    Could you please help me with this?

    Thanks!

    opened by sachin4594 0
Releases(v0.2.4-alpha)
Owner
Alex Song
Senior Lecturer at the University of Sydney. Research interests include nanophotonics, topological materials, non-Hermicity, quantum optics, and sustainability.
Alex Song
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023