Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Overview

Lottery Jackpots Exist in Pre-trained Models (Paper Link)

Requirements

  • Python >= 3.7.4
  • Pytorch >= 1.6.1
  • Torchvision >= 0.4.1

Reproduce the Experiment Results

  1. Download the pre-trained models from this link and place them in the pre-train folder.

  2. Select a configuration file in configs to reproduce the experiment results reported in the paper. For example, to find a lottery jackpot with 30 epochs for pruning 95% parameters of ResNet-32 on CIFAR-10, run:

    python cifar.py --config configs/resnet32_cifar10/90sparsity30epoch.yaml --gpus 0

    To find a lottery jackpot with 30 epochs for pruning 90% parameters of ResNet-50 on ImageNet, run:

    python imagenet.py --config configs/resnet50_imagenet/90sparsity30epoch.yaml --gpus 0

    Note that the data_path in the yaml file should be changed to the data

Evaluate Our Pruned Models

We provide configuration, training logs, and pruned models reported in the paper. They can be downloaded from the provided links in the following table:

Model Dataset Sparsity Epoch Top-1 Acc. Link
VGGNet-19 CIFAR-10 90% 30 93.88% link
VGGNet-19 CIFAR-10 90% 160 93.94% link
VGGNet-19 CIFAR-10 95% 30 93.49% link
VGGNet-19 CIFAR-10 95% 160 93.74% link
VGGNet-19 CIFAR-100 90% 30 72.59% link
VGGNet-19 CIFAR-100 90% 160 74.61% link
VGGNet-19 CIFAR-100 95% 30 71.76% link
VGGNet-19 CIFAR-100 95% 160 73.35% link
ResNet-32 CIFAR-10 90% 30 93.70% link
ResNet-32 CIFAR-10 90% 160 94.39% link
ResNet-32 CIFAR-10 95% 30 92.90% link
ResNet-32 CIFAR-10 95% 160 93.41% link
ResNet-32 CIFAR-100 90% 30 72.22% link
ResNet-32 CIFAR-100 90% 160 73.43% link
ResNet-32 CIFAR-100 95% 30 69.38% link
ResNet-32 CIFAR-100 95% 160 70.31% link
ResNet-50 ImageNet 80% 30 74.53% link
ResNet-50 ImageNet 80% 60 75.26% link
ResNet-50 ImageNet 90% 30 72.17% link
ResNet-50 ImageNet 90% 60 72.46% link

To test the our pruned models, download the pruned models and place them in the ckpt folder.

  1. Select a configuration file in configs to test the pruned models. For example, to evaluate a lottery jackpot for pruning ResNet-32 on CIFAR-10, run:

    python evaluate.py --config configs/resnet32_cifar10/evaluate.yaml --gpus 0

    To evaluate a lottery jackpot for pruning ResNet-50 on ImageNet, run:

    python evaluate.py --config configs/resnet50_imagenet/evaluate.yaml --gpus 0

Owner
Yuxin Zhang
Deep Neural Network Compression & Acceleration
Yuxin Zhang
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022