TuckER: Tensor Factorization for Knowledge Graph Completion

Related tags

Deep LearningTuckER
Overview

TuckER: Tensor Factorization for Knowledge Graph Completion

This codebase contains PyTorch implementation of the paper:

TuckER: Tensor Factorization for Knowledge Graph Completion. Ivana Balažević, Carl Allen, and Timothy M. Hospedales. Empirical Methods in Natural Language Processing (EMNLP), 2019. [Paper]

TuckER: Tensor Factorization for Knowledge Graph Completion. Ivana Balažević, Carl Allen, and Timothy M. Hospedales. ICML Adaptive & Multitask Learning Workshop, 2019. [Short Paper]

Link Prediction Results

Dataset MRR [email protected] [email protected] [email protected]
FB15k 0.795 0.892 0.833 0.741
WN18 0.953 0.958 0.955 0.949
FB15k-237 0.358 0.544 0.394 0.266
WN18RR 0.470 0.526 0.482 0.443

Running a model

To run the model, execute the following command:

 CUDA_VISIBLE_DEVICES=0 python main.py --dataset FB15k-237 --num_iterations 500 --batch_size 128
                                       --lr 0.0005 --dr 1.0 --edim 200 --rdim 200 --input_dropout 0.3 
                                       --hidden_dropout1 0.4 --hidden_dropout2 0.5 --label_smoothing 0.1

Available datasets are:

FB15k-237
WN18RR
FB15k
WN18

To reproduce the results from the paper, use the following combinations of hyperparameters with batch_size=128:

dataset lr dr edim rdim input_d hidden_d1 hidden_d2 label_smoothing
FB15k 0.003 0.99 200 200 0.2 0.2 0.3 0.
WN18 0.005 0.995 200 30 0.2 0.1 0.2 0.1
FB15k-237 0.0005 1.0 200 200 0.3 0.4 0.5 0.1
WN18RR 0.003 1.0 200 30 0.2 0.2 0.3 0.1

Requirements

The codebase is implemented in Python 3.6.6. Required packages are:

numpy      1.15.1
pytorch    1.0.1

Citation

If you found this codebase useful, please cite:

@inproceedings{balazevic2019tucker,
title={TuckER: Tensor Factorization for Knowledge Graph Completion},
author={Bala\v{z}evi\'c, Ivana and Allen, Carl and Hospedales, Timothy M},
booktitle={Empirical Methods in Natural Language Processing},
year={2019}
}
Owner
Ivana Balazevic
PhD candidate in Machine Learning @ University of Edinburgh. Ex Research Scientist Intern @ Facebook AI Research (FAIR) and @ Samsung AI.
Ivana Balazevic
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022