A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

Overview

Awesome-LiDAR-Camera-Calibration

Awesome

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes.

Outline

0. Introduction

For applications such as autonomous driving, robotics, navigation systems, and 3-D scene reconstruction, data of the same scene is often captured using both lidar and camera sensors. To accurately interpret the objects in a scene, it is necessary to fuse the lidar and the camera outputs together. Lidar camera calibration estimates a rigid transformation matrix (extrinsics, rotation+translation, 6 DoF) that establishes the correspondences between the points in the 3-D lidar plane and the pixels in the image plane.

Example

1. Target-based methods

Paper Target Feature Optimization Toolbox Note
Extrinsic Calibration of a Camera and Laser Range Finder (improves camera calibration), 2004 checkerboard C:Plane (a), L: pts in plane (m) point-to-plane CamLaserCalibraTool CN
Fast Extrinsic Calibration of a Laser Rangefinder to a Camera, 2005 checkerboard C: Plane (a), L: Plane (m) plane(n/d) correspondence, point-to-plane LCCT *
Extrinsic calibration of a 3D laser scanner and an omnidirectional camera, 2010 checkerboard C: plane (a), L: pts in plane (m) point-to-plane cam_lidar_calib *
LiDAR-Camera Calibration using 3D-3D Point correspondences, 2017 cardboard + ArUco C: 3D corners (a), L: 3D corners (m) ICP lidar_camera_calibration *
Reflectance Intensity Assisted Automatic and Accurate Extrinsic Calibration of 3D LiDAR and Panoramic Camera Using a Printed Chessboard, 2017 checkerboard C: 2D corners (a), L: 3D corners (a) PnP, angle difference ILCC *
Extrinsic Calibration of Lidar and Camera with Polygon, 2018 regular cardboard C: 2D edge, corners (a), L: 3D edge, pts in plane (a) point-to-line, point-inside-polygon ram-lab/plycal *
Automatic Extrinsic Calibration of a Camera and a 3D LiDAR using Line and Plane Correspondences, 2018 checkerboard C: 3D edge, plane(a), L: 3D edge, pts in plane (a) direcion/normal, point-to-line, point-to-plane Matlab LiDAR Toolbox *
Improvements to Target-Based 3D LiDAR to Camera Calibration, 2020 cardboard with ArUco C: 2d corners (a), L: 3D corners (a) PnP, IOU github *
ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems, 2020 checkerboard C: 2D corners (a), L: 3D corners (a) PnP ACSC *
Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor Setups, 2021 cardboard with circle & Aruco C: 3D points (a), L: 3D points (a) ICP velo2cam_ calibration *

C: camera, L: LiDAR, a: automaic, m: manual

2. Targetless methods

2.1. Motion-based methods

Paper Feature Optimization Toolbox Note
LiDAR and Camera Calibration Using Motions Estimated by Sensor Fusion Odometry, 2018 C: motion (ICP), L: motion (VO) hand-eye calibration * *

2.2. Scene-based methods

2.2.1. Traditional methods

Paper Feature Optimization Toolbox Note
Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information, 2012 C:grayscale, L: reflectivity mutual information, BB steepest gradient ascent Extrinsic Calib *
Automatic Calibration of Lidar and Camera Images using Normalized Mutual Information, 2013 C:grayscale, L: reflectivity, noraml normalized MI, particle swarm * *
Automatic Online Calibration of Cameras and Lasers, 2013 C: Canny edge, L: depth-discontinuous edge correlation, grid search * *
SOIC: Semantic Online Initialization and Calibration for LiDAR and Camera, 2020 semantic centroid PnP * *
A Low-cost and Accurate Lidar-assisted Visual SLAM System, 2021 C: edge(grayscale), L: edge (reflectivity, depth projection) ICP, coordinate descent algorithms CamVox *
Pixel-level Extrinsic Self Calibration of High Resolution LiDAR and Camera in Targetless Environments,2021 C:Canny edge(grayscale), L: depth-continuous edge point-to-line, Gaussian-Newton livox_camera_calib *
CRLF: Automatic Calibration and Refinement based on Line Feature for LiDAR and Camera in Road Scenes, 2021 C:straight line, L: straight line perspective3-lines (P3L) * CN

2.2.2. Deep-learning methods

Pape Toolbox Note
RegNet: Multimodal sensor registration using deep neural networks, 2017,IV regnet *
CalibNet: Geometrically supervised extrinsic calibration using 3d spatial transformer networks,2018,IROS CalibNet *

3. Other toolboxes

Toolbox Introduction Note
Apollo sensor calibration tools targetless method, no source code CN
Autoware camera lidar calibrator pick points mannually, PnP *
Autoware calibration camera lidar checkerboard, similar to LCCT CN
livox_camera_lidar_calibration pick points mannually, PnP *
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021