Layered Neural Atlases for Consistent Video Editing

Overview

Layered Neural Atlases for Consistent Video Editing

Project Page | Paper

This repository contains an implementation for the SIGGRAPH Asia 2021 paper Layered Neural Atlases for Consistent Video Editing.

The paper introduces the first approach for neural video unwrapping using an end-to-end optimized interpretable and semantic atlas-based representation, which facilitates easy and intuitive editing in the atlas domain.

Installation Requirements

The code is compatible with Python 3.7 and PyTorch 1.6.

You can create an anaconda environment called neural_atlases with the required dependencies by running:

conda create --name neural_atlases python=3.7 
conda activate neural_atlases 
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy  scikit-image tqdm  opencv -c pytorch
pip install imageio-ffmpeg gdown
python -m pip install detectron2 -f   https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html

Data convention

The code expects 3 folders for each video input, e.g. for a video of 50 frames named "blackswan":

  1. data/blackswan: A folder of video frames containing image files in the following convention: blackswan/00000.jpg,blackswan/00001.jpg,...,blackswan/00049.jpg (as in the DAVIS dataset).
  2. data/blackswan_flow: A folder with forward and backward optical flow files in the following convention: blackswan_flow/00000.jpg_00001.jpg.npy,blackswan_flow/00001.jpg_00000.jpg,...,blackswan_flow/00049.jpg_00048.jpg.npy.
  3. data/blackswan_maskrcnn: A folder with rough masks (created by Mask-RCNN or any other way) containing files in the following convention: blackswan_maskrcnn/00000.jpg,blackswan_maskrcnn/00001.jpg,...,blackswan_maskrcnn/00049.jpg

For a few examples of DAVIS sequences run:

gdown https://drive.google.com/uc?id=1WipZR9LaANTNJh764ukznXXAANJ5TChe
unzip data.zip

Masks extraction

Given only the video frames folder data/blackswan it is possible to extract the Mask-RCNN masks (and create the required folder data/blackswan_maskrcnn) by running:

python preprocess_mask_rcnn.py --vid-path data/blackswan --class_name bird

where --class_name determines the COCO class name of the sought foreground object. It is also possible to choose the first instance retrieved by Mask-RCNN by using --class_name anything. This is usefull for cases where Mask-RCNN gets correct masks with wrong classes as in the "libby" video:

python preprocess_mask_rcnn.py --vid-path data/libby --class_name anything

Optical flows extraction

Furthermore, the optical flow folder can be extracted using RAFT. For linking RAFT into the current project run:

git submodule update --init
cd thirdparty/RAFT/
./download_models.sh
cd ../..

For extracting the optical flows (and creating the required folder data/blackswan_flow) run:

python preprocess_optical_flow.py --vid-path data/blackswan --max_long_edge 768

Pretrained models

For downloading a sample set of our pretrained models together with sample edits run:

gdown https://drive.google.com/uc?id=10voSCdMGM5HTIYfT0bPW029W9y6Xij4D
unzip pretrained_models.zip

Training

For training a model on a video, run:

python train.py config/config.json

where the video frames folder is determined by the config parameter "data_folder". Note that in order to reduce the training time it is possible to reduce the evaluation frequency controlled by the parameter "evaluate_every" (e.g. by changing it to 10000). The other configurable parameters are documented inside the file train.py.

Evaluation

During training, the model is evaluated. For running only evaluation on a trained folder run:

python only_evaluate.py --trained_model_folder=pretrained_models/checkpoints/blackswan --video_name=blackswan --data_folder=data --output_folder=evaluation_outputs

where trained_model_folder is the path to a folder that contains the config.json and checkpoint files of the trained model.

Editing

To apply editing, run the script only_edit.py. Examples for the supplied pretrained models for "blackswan" and "boat":

python only_edit.py --trained_model_folder=pretrained_models/checkpoints/blackswan --video_name=blackswan --data_folder=data --output_folder=editing_outputs --edit_foreground_path=pretrained_models/edit_inputs/blackswan/edit_blackswan_foreground.png --edit_background_path=pretrained_models/edit_inputs/blackswan/edit_blackswan_background.png
python only_edit.py --trained_model_folder=pretrained_models/checkpoints/boat --video_name=boat --data_folder=data --output_folder=editing_outputs --edit_foreground_path=pretrained_models/edit_inputs/boat/edit_boat_foreground.png --edit_background_path=pretrained_models/edit_inputs/boat/edit_boat_backgound.png

Where edit_foreground_path and edit_background_path specify the paths to 1000x1000 images of the RGBA atlas edits.

For applying an edit that was done on a frame (e.g. for the pretrained "libby"):

python only_edit.py --trained_model_folder=pretrained_models/checkpoints/libby --video_name=libby --data_folder=data --output_folder=editing_outputs  --use_edit_frame --edit_frame_index=7 --edit_frame_path=pretrained_models/edit_inputs/libby/edit_frame_.png

Citation

If you find our work useful in your research, please consider citing:

@article{kasten2021layered,
  title={Layered Neural Atlases for Consistent Video Editing},
  author={Kasten, Yoni and Ofri, Dolev and Wang, Oliver and Dekel, Tali},
  journal={arXiv preprint arXiv:2109.11418},
  year={2021}
}
Owner
Yoni Kasten
Yoni Kasten
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022