PyKaldi GOP-DNN on Epa-DB

Overview

PyKaldi GOP-DNN on Epa-DB

This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spanish speakers from Argentina. It uses a PyTorch acoustic model based on Kaldi's TDNN-F acoustic model. A script is provided to convert Kaldi's model to PyTorch. Kaldi's model must be downloaded separately from the Kaldi website

If you use this code or the Epa database, please cite the following paper:

J. Vidal, L. Ferrer, L. Brambilla, "EpaDB: a database for the development of pronunciation assessment systems", isca-speech

@article{vidal2019epadb,
  title={EpaDB: a database for development of pronunciation assessment systems},
  author={Vidal, Jazmin and Ferrer, Luciana and Brambilla, Leonardo},
  journal={Proc. Interspeech 2019},
  pages={589--593},
  year={2019}
}

Table of Contents

Introduction

This toolkit is meant to facilitate experimentation with Epa-DB by allowing users to run a state-of-the-art baseline system on it. Epa-DB, is a database of non-native English speech by argentinian speakers of Spanish. It is intended for research on mispronunciation detection and development of pronunciation assessment systems. The database includes recordings from 30 non-native speakers of English, 15 male and 15 female, whose first language (L1) is Spanish from Argentina (mainly of the Rio de la Plata dialect). Each speaker recorded 64 short English phrases phonetically balanced and specifically designed to globally contain all the sounds difficult to pronounce for the target population. All recordings were annotated at phone level by expert raters.

For more information on the database, please refer to the documentation or publication

If you are only looking for the EpaDB corpus, you can download it from this link.

Prerequisites

  1. Kaldi installed.

  2. TextGrid managing library installed using pip. Instructions at this link.

  3. The EpaDB database downloaded. Alternative link.

  4. Librispeech ASR model

How to install

To install this repository, do the following steps:

  1. Clone this repository:
git clone https://github.com/MarceloSancinetti/epa-gop-pykaldi.git
  1. Download Librispeech ASR acoustic model from Kaldi and move it or link it inside the top directory of the repository:
wget https://kaldi-asr.org/models/13/0013_librispeech_v1_chain.tar.gz
tar -zxvf 0013_librispeech_v1_chain.tar.gz
  1. Convert the acoustic model to text format:
nnet3-copy --binary=false exp/chain_cleaned/tdnn_1d_sp/final.mdl exp/chain_cleaned/tdnn_1d_sp/final.txt
  1. Install the requirements:
pip install -r requirements.txt
  1. Install PyKaldi:

Follow instructions from https://github.com/pykaldi/pykaldi#installation

  1. Convert the acoustic model to Pytorch:
python convert_chain_to_pytorch.py
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022