A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

Related tags

Deep LearningTCV-X21
Overview

TCV-X21 validation for divertor turbulence simulations

Quick links

arXiv PDF

Binder DOI

Dataset licence Software licence

Test Python package codecov

Intro

Welcome to TCV-X21. We're glad you've found us!

This repository is designed to let you perform the analysis presented in Oliveira and Body et. al., Nuclear Fusion, 2021, both using the data given in the paper, and with a turbulence simulation of your own. We hope that, by providing the analysis, the TCV-X21 case can be used as a standard validation and bench-marking case for turbulence simulations of the divertor in fusion experiments. The repository allows you to scrutinise and suggest improvements to the analysis (there's always room for improvement), to directly interact with and explore the data in greater depth than is possible in a paper, and — we hope — use this case to test a simulation of your own.

To use this repository, you'll need to either use the mybinder.org link below OR user rights on a computer with Python-3, conda and git-lfs pre-installed.

Video tutorial

This quick tutorial shows you how to navigate the repository and use some of the functionality of the library.

Video_tutorial.mp4

What can you find in this repository

  • 1.experimental_data: data from the TCV experimental campaign, in NetCDF, MATLAB and IMAS formats, as well as information about the reference scenario, and the reference magnetic geometry (in .eqdsk, IMAS and PARALLAX-nc formats)
  • 2.simulation_data: data from simulations of the TCV-X21 case, in NetCDF format, as well as raw data files and conversion routines
  • 3.results: high resolution PNGs and LaTeX-ready tables for a paper
  • tcvx21: a Python library of software, which includes
    • record_c: a class to interface with NetCDF/HDF5 formatted data files
    • observable_c: a class to interact with and plot observables
    • file_io: tools to interact with MATLAB and JSON files
    • quant_validation: routines to perform the quantitative validation
    • analysis: statistics, curve-fitting, bootstrap algorithms, contour finding
    • units_m.py: setting up pint-based unit-aware analysis (it's difficult to overstate how cool this library is)
    • grillix_post: a set of routines used for post-processing GRILLIX simulation data, which might help if you're trying to post-process your own simulation. You can see a worked example in simulation_postprocessing.ipynb
  • notebooks: Jupyter notebooks, which allow us to provide code with outputs and comments together
    • simulation_setup.ipynb: what you might need to set up a simulation to test
    • simulation_postprocessing.ipynb: how to post-process the data
    • data_exploration.ipynb: some examples to get you started exploring the data
    • bulk_process.ipynb: runs over every observable to make the results — which you'll need to do if you're writing a paper from the results
  • tests: tests to make sure that we haven't broken anything in the analysis routines
  • README.md: this file, which helps you to get the software up and running, and to explain where you can find everything you need. It also provides the details of the licencing (below). There's more specific README.md files in several of the subfolders.

and lots more files. If you're not a developer, you can safely ignore these.

What can't you find in this repository

Due to licencing issues, the source code of the simulations is not provided. Sorry!

Also, the raw simulations are not provided here due to space limitations (some runs have more than a terabyte of data), but they are all backed up on archive servers. If you'd like to access the raw data, get in contact.

License and attribution notice

The TCV-X21 datasets are licenced under a Creative Commons Attribution 4.0 license, given in LICENCE. The source code of the analysis routines and Python library is licenced under a MIT license, given in tcvx21/LICENCE.

For the datasets, we ask that you provide attribution if using this data via the citation in the CITATION.cff file. We additionally require that you mark any changes to the dataset, and state specifically that the authors do not endorse your work unless such endorsement has been expressly given.

For the software, you can use, modify and share without attribution or marking changes.

Running the Jupyter notebooks (installation as non-root user)

To run the Jupyter notebooks, you have two options. The first is to use the mybinder.org interface, which let you interact with the notebooks via a web interface. You can launch the binder for this repository by clicking the binder badge in the repository header. Note that not all of the repository content is copied to the Docker image (this is specified in .dockerignore). The large checkpoint files are not included in the image, although they can be found in the repository at 2.simulation_data/GRILLIX/checkpoints_for_1mm. Additionally, the default docker image will not work with git.

Alternatively, if you'd like to run the notebooks locally or to extend the repository, you'll need to install additional Python packages. First of all, you need Python-3 and conda installed (latest versions recommended). Then, to install the necessary packages, we make a sandbox environment. This has a few advantages to installing packages globally — sudo rights are not required, you can install package versions without risking breaking other Python scripts, and if everything goes terribly wrong you can easily delete everything and restart. We've included a simple shell script to perform the necessary steps, which you can execute with

./install_env.sh

This will install the library in a subfolder of the TCV-X21 repository called tcvx21_env. It will also add a kernel to your global Jupyter installation. To remove the repository, you can delete the folder tcvx21_env and run jupyter kernelspec uninstall tcvx21.

To run tests and open Jupyter

Once you've installed via either option, you can activate the python environment with conda activate ./tcvx21_env. To deactivate, run conda deactivate.

Then, it is recommended to run the test suite with pytest which ensures that everything is installed and working correctly. If something fails, let us know in the issues. Note that this executes all of the analysis notebooks, so it might take a while to run.

Finally, run jupyter lab to open a Jupyter server in the TCV-X21 repository. Then, you can open any of the notebooks (.ipynb extension) by clicking in the side-bar.

A note on pinned dependencies

To ensure that the results are reproducible, the environment.yml file has pinned dependencies. However, if you want to use this software as a library, pinned dependencies are unnecessarily restrictive. You can remove the versions after the = sign in the environment.yml, but be warned that things might break.

You might also like...
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset.
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

An experimental technique for efficiently exploring neural architectures.
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

A simple but complete full-attention transformer with a set of promising experimental features from various papers
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Comments
  • Repair results

    Repair results

    It appears that the 3.results folder had not been updated with the outputs of the notebooks.

    I've rerun the notebooks and now have the latest results in the folder.

    opened by TBody 1
Releases(v1.0)
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022