Official Pytorch implementation of MixMo framework

Overview

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks

Official PyTorch implementation of the MixMo framework | paper | docs

Alexandre Ramé, Rémy Sun, Matthieu Cord

Citation

If you find this code useful for your research, please cite:

@article{rame2021ixmo,
    title={MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks},
    author={Alexandre Rame and Remy Sun and Matthieu Cord},
    year={2021},
    journal={arXiv preprint arXiv:2103.06132}
}

Abstract

Recent strategies achieved ensembling “for free” by fitting concurrently diverse subnetworks inside a single base network. The main idea during training is that each subnetwork learns to classify only one of the multiple inputs simultaneously provided. However, the question of how to best mix these multiple inputs has not been studied so far.

In this paper, we introduce MixMo, a new generalized framework for learning multi-input multi-output deep subnetworks. Our key motivation is to replace the suboptimal summing operation hidden in previous approaches by a more appropriate mixing mechanism. For that purpose, we draw inspiration from successful mixed sample data augmentations. We show that binary mixing in features - particularly with rectangular patches from CutMix - enhances results by making subnetworks stronger and more diverse.

We improve state of the art for image classification on CIFAR-100 and Tiny ImageNet datasets. Our easy to implement models notably outperform data augmented deep ensembles, without the inference and memory overheads. As we operate in features and simply better leverage the expressiveness of large networks, we open a new line of research complementary to previous works.

Overview

Most important code sections

This repository provides a general wrapper over PyTorch to reproduce the main results from the paper. The code sections specific to MixMo can be found in:

  1. mixmo.loaders.dataset_wrapper.py and specifically MixMoDataset to create batches with multiple inputs and multiple outputs.
  2. mixmo.augmentations.mixing_blocks.py where we create the mixing masks, e.g. via linear summing (_mixup_mask) or via patch mixing (_cutmix_mask).
  3. mixmo.networks.resnet.py and mixmo.networks.wrn.py where we adapt the network structures to handle:
    • multiple inputs via multiple conv1s encoders (one for each input). The function mixmo.augmentations.mixing_blocks.mix_manifold is used to mix the extracted representations according to the masks provided in metadata from MixMoDataset.
    • multiple outputs via multiple predictions.

This translates to additional tensor management in mixmo.learners.learner.py.

Pseudo code

Our MixMoDataset wraps a PyTorch Dataset. The batch_repetition_sampler repeats the same index b times in each batch. Moreover, we provide SoftCrossEntropyLoss which handles soft-labels required by mixed sample data augmentations such as CutMix.

from mixmo.loaders import (dataset_wrapper, batch_repetition_sampler)
from mixmo.networks.wrn import WideResNetMixMo
from mixmo.core.loss import SoftCrossEntropyLoss as criterion

...

# cf mixmo.loaders.loader
train_dataset = dataset_wrapper.MixMoDataset(
        dataset=CIFAR100(os.path.join(dataplace, "cifar100-data")),
        num_members=2,  # we use M=2 subnetworks
        mixmo_mix_method="cutmix",  # patch mixing, linker to mixmo.augmentations.mixing_blocks._cutmix_mask
        mixmo_alpha=2,  # mixing ratio sampled from Beta distribution with concentration 2
        mixmo_weight_root=3  # root for reweighting of loss components 3
        )
network = WideResNetMixMo(depth=28, widen_factor=10, num_classes=100)

...

# cf mixmo.learners.learner and mixmo.learners.model_wrapper
for _ in range(num_epochs):
    for indexes_0, indexes_1 in batch_repetition_sampler(batch_size=64, b=4, max_index=len(train_dataset)):
        for (inputs_0, inputs_1, targets_0, targets_1, metadata_mixmo_masks) in train_dataset(indexes_0, indexes_1):
            outputs_0, outputs_1 = network([inputs_0, inputs_1], metadata_mixmo_masks)
            loss = criterion(outputs_0, targets_0) + criterion(outputs_1, targets_1)
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

Configuration files

Our code heavily relies on yaml config files. In the mixmo-pytorch/config folder, we provide the configs to reproduce the main paper results.

For example, the state-of-the-art exp_cifar100_wrn2810-2_cutmixmo-p5_msdacutmix_bar4 means that:

  • cifar100: dataset is CIFAR-100.
  • wrn2810-2: WideResNet-28-10 network architecture with M=2 subnetworks.
  • cutmixmo-p5: mixing block is patch mixing with probability p=0.5 else linear mixing.
  • msdacutmix: use CutMix mixed sample data augmentation.
  • bar4: batch repetition to b=4.

Results and available checkpoints

CIFAR-100 with WideResNet-28-10

Subnetwork method MSDA Top-1 Accuracy config file in mixmo-pytorch/config/cifar100
-- Vanilla 81.79 exp_cifar100_wrn2810_1net_standard_bar1.yaml
-- Mixup 83.43 exp_cifar100_wrn2810_1net_msdamixup_bar1.yaml
-- CutMix 83.95 exp_cifar100_wrn2810_1net_msdacutmix_bar1.yaml
MIMO -- 82.92 exp_cifar100_wrn2810-2_mimo_standard_bar4.yaml
Linear-MixMo -- 82.96 exp_cifar100_wrn2810-2_linearmixmo_standard_bar4.yaml
Cut-MixMo -- 85.52 - 85.59 exp_cifar100_wrn2810-2_cutmixmo-p5_standard_bar4.yaml
Linear-MixMo CutMix 85.36 - 85.57 exp_cifar100_wrn2810-2_linearmixmo_msdacutmix_bar4.yaml
Cut-MixMo CutMix 85.77 - 85.92 exp_cifar100_wrn2810-2_cutmixmo-p5_msdacutmix_bar4.yaml

CIFAR-10 with WideResNet-28-10

Subnetwork method MSDA Top-1 Accuracy config file in mixmo-pytorch/config/cifar10
-- Vanilla 96.37 exp_cifar10_wrn2810_1net_standard_bar1.yaml
-- Mixup 97.07 exp_cifar10_wrn2810_1net_msdamixup_bar1.yaml
-- CutMix 97.28 exp_cifar10_wrn2810_1net_msdacutmix_bar1.yaml
MIMO -- 96.71 exp_cifar10_wrn2810-2_mimo_standard_bar4.yaml
Linear-MixMo -- 96.88 exp_cifar10_wrn2810-2_linearmixmo_standard_bar4.yaml
Cut-MixMo -- 97.52 exp_cifar10_wrn2810-2_cutmixmo-p5_standard_bar4.yaml
Linear-MixMo CutMix 97.73 exp_cifar10_wrn2810-2_linearmixmo_msdacutmix_bar4.yaml
Cut-MixMo CutMix 97.83 exp_cifar10_wrn2810-2_cutmixmo-p5_msdacutmix_bar4.yaml

Tiny ImageNet-200 with PreActResNet-18-width

Method Width Top-1 Accuracy config file in mixmo-pytorch/config/tiny
Vanilla 1 62.75 exp_tinyimagenet_res18_1net_standard_bar1.yaml
Linear-MixMo 1 62.91 exp_tinyimagenet_res18-2_linearmixmo_standard_bar4.yaml
Cut-MixMo 1 64.32 exp_tinyimagenet_res18-2_cutmixmo-p5_standard_bar4.yaml
Vanilla 2 64.91 exp_tinyimagenet_res182_1net_standard_bar1.yaml
Linear-MixMo 2 67.03 exp_tinyimagenet_res182-2_linearmixmo_standard_bar4.yaml
Cut-MixMo 2 69.12 exp_tinyimagenet_res182-2_cutmixmo-p5_standard_bar4.yaml
Vanilla 3 65.84 exp_tinyimagenet_res183_1net_standard_bar1.yaml
Linear-MixMo 3 68.36 exp_tinyimagenet_res183-2_linearmixmo_standard_bar4.yaml
Cut-MixMo 3 70.23 exp_tinyimagenet_res183-2_cutmixmo-p5_standard_bar4.yaml

Installation

Requirements overview

  • python >= 3.6
  • torch >= 1.4.0
  • torchsummary >= 1.5.1
  • torchvision >= 0.5.0
  • tensorboard >= 1.14.0

Procedure

  1. Clone the repo:
$ git clone https://github.com/alexrame/mixmo-pytorch.git
  1. Install this repository and the dependencies using pip:
$ conda create --name mixmo python=3.6.10
$ conda activate mixmo
$ cd mixmo-pytorch
$ pip install -r requirements.txt

With this, you can edit the MixMo code on the fly.

Datasets

We advise to first create a dedicated data folder dataplace, that will be provided as an argument in the subsequent scripts.

  • CIFAR

CIFAR-10 and CIFAR-100 datasets are managed by Pytorch dataloader. First time you run a script, the dataloader will download the dataset in your provided dataplace.

  • Tiny-ImageNet

Tiny-ImageNet dataset needs to be download beforehand. The following process is forked from manifold mixup.

  1. Download the zipped data from https://tiny-imagenet.herokuapp.com/.
  2. Extract the zipped data in folder dataplace.
  3. Run the following script (This will arange the validation data in the format required by the pytorch loader).
$ python scripts/script_load_tiny_data.py --dataplace $dataplace

Running the code

Training

Baseline

First, to train a baseline model, simply execute the following command:

$ python3 scripts/train.py --config_path config/cifar100/exp_cifar100_wrn2810_1net_standard_bar1.yaml --dataplace $dataplace --saveplace $saveplace

It will create an output folder exp_cifar100_wrn2810_1net_standard_bar1 located in parent folder saveplace. This folder includes model checkpoints, a copy of your config file, logs and tensorboard logs. By default, if the output folder already exists, training will load the last weights epoch and will continue. If you want to forcefully restart training, simply add --from_scratch as an argument.

MixMo

When training MixMo, you just need to select the appropriate config file. For example, to obtain state of the art results on CIFAR-100 by combining Cut-MixMo and CutMix, just execute:

$ python3 scripts/train.py --config_path config/cifar100/exp_cifar100_wrn2810-2_cutmixmo-p5_msdacutmix_bar4.yaml --dataplace $dataplace --saveplace $saveplace

Evaluation

To evaluate the accuracy of a given strategy, you can train your own model, or just download our pretrained checkpoints:

$ python3 scripts/evaluate.py --config_path config/cifar100/exp_cifar100_wrn2810-2_cutmixmo-p5_msdacutmix_bar4.yaml --dataplace $dataplace --checkpoint $checkpoint --tempscal
  • checkpoint can be either:
    • a path towards a checkpoint.
    • an int matching the training epoch you wish to evaluate. In that case, you need to provide --saveplace $saveplace.
    • the string best: we then automatically select the best training epoch. In that case, you need to provide --saveplace $saveplace.
  • --tempscal: indicates that you will apply temperature scaling

Results will be printed at the end of the script.

If you wish to test the models against common corruptions and perturbations, download the CIFAR-100-c dataset in your dataplace. Then use --robustness at evaluation.

Create your own configuration files and learning strategies

You can create new configs automatically via:

$ python3 scripts/templateutils_mixmo.py --template_path scripts/exp_mixmo_template.yaml --config_dir config/$your_config_dir --dataset $dataset

Acknowledgements and references

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022