This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

Related tags

Deep LearningTFR-Net
Overview

Python 3.6

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Note: We strongly recommend that you browse the overall structure of our code at first. If you have any question, feel free to contact us.

Support Models

In this framework, we support the following methods:

Type Model Name From
Baselines TFN Tensor-Fusion-Network
Baselines MulT(without CTC) Multimodal-Transformer
Baselines MISA MISA
Missing-Task TFR-Net TFR-Net

Usage

  • Clone this repo and install requirements.
git clone https://github.com/Columbine21/TFR-Net.git
cd TFR-Net

Data Preprocessing

  1. Download datasets from the following links.
  • MOSI

download from CMU-MultimodalSDK

  • SIMS

download from Baidu Yun Disk [code: ozo2] or Google Drive
Notes: Please download new features CH_SIMS_unaligned_39.pkl from Baidu Yun Disk [code: g63s] or Google Drive, which is compatible with our new code structure. The md5 code is a5b2ed3844200c7fb3b8ddc750b77feb.

  1. Download Bert-Base, Chinese from Google-Bert.

  2. Convert Tensorflow into pytorch using transformers-cli

  3. Install python dependencies

  4. Organize features and save them as pickle files with the following structure.

Notes: CH_SIMS_unaligned_39.pkl is compatible with the following structure

Dataset Feature Structure
0) "regression_labels": [] }, "valid": {***}, # same as the "train" "test": {***}, # same as the "train" } ">
{
    "train": {
        "raw_text": [],
        "audio": [],
        "vision": [],
        "id": [], # [video_id$_$clip_id, ..., ...]
        "text": [],
        "text_bert": [],
        "audio_lengths": [],
        "vision_lengths": [],
        "annotations": [],
        "classification_labels": [], # Negative(< 0), Neutral(0), Positive(> 0)
        "regression_labels": []
    },
    "valid": {***}, # same as the "train" 
    "test": {***}, # same as the "train"
}
  1. Modify config/config_regression.py to update dataset pathes.

Run

sh test.sh

Paper

Please cite our paper if you find our work useful for your research:

@inproceedings{yu2020ch,
  title={CH-SIMS: A Chinese Multimodal Sentiment Analysis Dataset with Fine-grained Annotation of Modality},
  author={Yu, Wenmeng and Xu, Hua and Meng, Fanyang and Zhu, Yilin and Ma, Yixiao and Wu, Jiele and Zou, Jiyun and Yang, Kaicheng},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  pages={3718--3727},
  year={2020}
}
@inproceedings{yuan2021transformer,
  title={Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis},
  author={Yuan, Ziqi and Li, Wei and Xu, Hua and Yu, Wenmeng},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  pages={4400--4407},
  year={2021}
}
Owner
Ziqi Yuan
bupt CS students.
Ziqi Yuan
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022