Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Overview

Ranger-Deep-Learning-Optimizer


Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) in one optimizer.

quick note - Ranger21 is now in beta and is Ranger with a host of new improvements.

Recommend you compare results with Ranger21: https://github.com/lessw2020/Ranger21

Latest version 20.9.4 - updates Gradient Centralization to GC2 (thanks to GC developer) and removes addcmul_ deprecation warnings in PyTorch 1.60.



*Latest version is in ranger2020.py - looking at a few other additions before integrating into the main ranger.py.

What is Gradient Centralization? = "GC can be viewed as a projected gradient descent method with a constrained loss function. The Lipschitzness of the constrained loss function and its gradient is better so that the training process becomes more efficient and stable." Source paper: https://arxiv.org/abs/2004.01461v2
Ranger now uses Gradient Centralization by default, and applies it to all conv and fc layers by default. However, everything is customizable so you can test with and without on your own datasets. (Turn on off via "use_gc" flag at init).

Best training results - use a 75% flat lr, then step down and run lower lr for 25%, or cosine descend last 25%.


Per extensive testing - It's important to note that simply running one learning rate the entire time will not produce optimal results.
Effectively Ranger will end up 'hovering' around the optimal zone, but can't descend into it unless it has some additional run time at a lower rate to drop down into the optimal valley.

Full customization at init:


Ranger will now print out id and gc settings at init so you can confirm the optimizer settings at train time:

/////////////////////

Medium article with more info:
https://medium.com/@lessw/new-deep-learning-optimizer-ranger-synergistic-combination-of-radam-lookahead-for-the-best-of-2dc83f79a48d

Multiple updates: 1 - Ranger is the optimizer we used to beat the high scores for 12 different categories on the FastAI leaderboards! (Previous records all held with AdamW optimizer).

2 - Highly recommend combining Ranger with: Mish activation function, and flat+ cosine anneal training curve.

3 - Based on that, also found .95 is better than .90 for beta1 (momentum) param (ala betas=(0.95, 0.999)).

Fixes: 1 - Differential Group learning rates now supported. This was fix in RAdam and ported here thanks to @sholderbach. 2 - save and then load may leave first run weights stranded in memory, slowing down future runs = fixed.

Installation

Clone the repo, cd into it and install it in editable mode (-e option). That way, these is no more need to re-install the package after modification.

git clone https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
cd Ranger-Deep-Learning-Optimizer
pip install -e . 

Usage

from ranger import Ranger  # this is from ranger.py
from ranger import RangerVA  # this is from ranger913A.py
from ranger import RangerQH  # this is from rangerqh.py

# Define your model
model = ...
# Each of the Ranger, RangerVA, RangerQH have different parameters.
optimizer = Ranger(model.parameters(), **kwargs)

Usage and notebook to test are available here: https://github.com/lessw2020/Ranger-Mish-ImageWoof-5

Citing this work

We recommend you use the following to cite Ranger in your publications:

@misc{Ranger,
  author = {Wright, Less},
  title = {Ranger - a synergistic optimizer.},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer}}
}
Owner
Less Wright
Principal Software Engineer at Audere PM/Test/Dev at Microsoft Software Architect at X10 Wireless
Less Wright
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022