NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

Overview

NU-Wave — Official PyTorch Implementation

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
Junhyeok Lee, Seungu Han @ MINDsLab Inc., SNU

Paper(arXiv): https://arxiv.org/abs/2104.02321 (Accepted to INTERSPEECH 2021)
Audio Samples: https://mindslab-ai.github.io/nuwave

Official Pytorch+Lightning Implementation for NU-Wave.

Update: CODE RELEASED! README is DONE.

Requirements

Preprocessing

Before running our project, you need to download and preprocess dataset to .pt files

  1. Download VCTK dataset
  2. Remove speaker p280 and p315
  3. Modify path of downloaded dataset data:dir in hparameters.yaml
  4. run utils/wav2pt.py
$ python utils/wav2pt.py

Training

  1. Adjust hparameters.yaml, especially train section.
train:
  batch_size: 18 # Dependent on GPU memory size
  lr: 0.00003
  weight_decay: 0.00
  num_workers: 64 # Dependent on CPU cores
  gpus: 2 # number of GPUs
  opt_eps: 1e-9
  beta1: 0.5
  beta2: 0.999
  • If you want to train with single speaker, use VCTKSingleSpkDataset instead of VCTKMultiSpkDataset for dataset in dataloader.py. And use batch_size=1 for validation dataloader.
  • Adjust data section in hparameters.yaml.
data:
  dir: '/DATA1/VCTK/VCTK-Corpus/wav48/p225' #dir/spk/format
  format: '*mic1.pt'
  cv_ratio: (223./231., 8./231., 0.00) #train/val/test
  1. run trainer.py.
$ python trainer.py
  • If you want to resume training from checkpoint, check parser.
    parser = argparse.ArgumentParser()
    parser.add_argument('-r', '--resume_from', type =int,\
            required = False, help = "Resume Checkpoint epoch number")
    parser.add_argument('-s', '--restart', action = "store_true",\
            required = False, help = "Significant change occured, use this")
    parser.add_argument('-e', '--ema', action = "store_true",\
            required = False, help = "Start from ema checkpoint")
    args = parser.parse_args()
  • During training, tensorboard logger is logging loss, spectrogram and audio.
$ tensorboard --logdir=./tensorboard --bind_all

Evaluation

run for_test.py or test.py

$ python test.py -r {checkpoint_number} {-e:option, if ema} {--save:option}
or
$ python for_test.py -r {checkpoint_number} {-e:option, if ema} {--save:option}

Please check parser.

    parser = argparse.ArgumentParser()
    parser.add_argument('-r', '--resume_from', type =int,
                required = True, help = "Resume Checkpoint epoch number")
    parser.add_argument('-e', '--ema', action = "store_true",
                required = False, help = "Start from ema checkpoint")
    parser.add_argument('--save', action = "store_true",
               required = False, help = "Save file")

While we provide lightning style test code test.py, it has device dependency. Thus, we recommend to use for_test.py.

References

This implementation uses code from following repositories:

This README and the webpage for the audio samples are inspired by:

The audio samples on our webpage are partially derived from:

Repository Structure

.
├── Dockerfile
├── dataloader.py           # Dataloader for train/val(=test)
├── filters.py              # Filter implementation
├── test.py                 # Test with lightning_loop.
├── for_test.py             # Test with for_loop. Recommended due to device dependency of lightning
├── hparameter.yaml         # Config
├── lightning_model.py      # NU-Wave implementation. DDPM is based on ivanvok's WaveGrad implementation
├── model.py                # NU-Wave model based on lmnt-com's DiffWave implementation
├── requirement.txt         # requirement libraries
├── sampling.py             # Sampling a file
├── trainer.py              # Lightning trainer
├── README.md           
├── LICSENSE
├── utils
│  ├── stft.py              # STFT layer
│  ├── tblogger.py          # Tensorboard Logger for lightning
│  └── wav2pt.py            # Preprocessing
└── docs                    # For github.io
   └─ ...

Citation & Contact

If this repository useful for your research, please consider citing! Bibtex will be updated after INTERSPEECH 2021 conference.

@article{lee2021nuwave,
  title={NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling},
  author={Lee, Junhyeok and Han, Seungu},
  journal={arXiv preprint arXiv:2104.02321},
  year={2021}
}

If you have a question or any kind of inquiries, please contact Junhyeok Lee at [email protected]

Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023